പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

7x-8y=9,4x-13y=-10
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
7x-8y=9
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
7x=8y+9
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 8y ചേർക്കുക.
x=\frac{1}{7}\left(8y+9\right)
ഇരുവശങ്ങളെയും 7 കൊണ്ട് ഹരിക്കുക.
x=\frac{8}{7}y+\frac{9}{7}
\frac{1}{7}, 8y+9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
4\left(\frac{8}{7}y+\frac{9}{7}\right)-13y=-10
4x-13y=-10 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{8y+9}{7} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{32}{7}y+\frac{36}{7}-13y=-10
4, \frac{8y+9}{7} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\frac{59}{7}y+\frac{36}{7}=-10
\frac{32y}{7}, -13y എന്നതിൽ ചേർക്കുക.
-\frac{59}{7}y=-\frac{106}{7}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{36}{7} കുറയ്ക്കുക.
y=\frac{106}{59}
-\frac{59}{7} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=\frac{8}{7}\times \frac{106}{59}+\frac{9}{7}
x=\frac{8}{7}y+\frac{9}{7} എന്നതിലെ y എന്നതിനായി \frac{106}{59} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{848}{413}+\frac{9}{7}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{8}{7}, \frac{106}{59} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{197}{59}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{9}{7} എന്നത് \frac{848}{413} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{197}{59},y=\frac{106}{59}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
7x-8y=9,4x-13y=-10
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-10\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{7\left(-13\right)-\left(-8\times 4\right)}&-\frac{-8}{7\left(-13\right)-\left(-8\times 4\right)}\\-\frac{4}{7\left(-13\right)-\left(-8\times 4\right)}&\frac{7}{7\left(-13\right)-\left(-8\times 4\right)}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{59}&-\frac{8}{59}\\\frac{4}{59}&-\frac{7}{59}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{59}\times 9-\frac{8}{59}\left(-10\right)\\\frac{4}{59}\times 9-\frac{7}{59}\left(-10\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{197}{59}\\\frac{106}{59}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=\frac{197}{59},y=\frac{106}{59}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
7x-8y=9,4x-13y=-10
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
4\times 7x+4\left(-8\right)y=4\times 9,7\times 4x+7\left(-13\right)y=7\left(-10\right)
7x, 4x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 4 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 7 കൊണ്ടും ഗുണിക്കുക.
28x-32y=36,28x-91y=-70
ലഘൂകരിക്കുക.
28x-28x-32y+91y=36+70
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 28x-32y=36 എന്നതിൽ നിന്ന് 28x-91y=-70 കുറയ്ക്കുക.
-32y+91y=36+70
28x, -28x എന്നതിൽ ചേർക്കുക. 28x, -28x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
59y=36+70
-32y, 91y എന്നതിൽ ചേർക്കുക.
59y=106
36, 70 എന്നതിൽ ചേർക്കുക.
y=\frac{106}{59}
ഇരുവശങ്ങളെയും 59 കൊണ്ട് ഹരിക്കുക.
4x-13\times \frac{106}{59}=-10
4x-13y=-10 എന്നതിലെ y എന്നതിനായി \frac{106}{59} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
4x-\frac{1378}{59}=-10
-13, \frac{106}{59} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
4x=\frac{788}{59}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1378}{59} ചേർക്കുക.
x=\frac{197}{59}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x=\frac{197}{59},y=\frac{106}{59}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.