പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

7x-6y=-30,x-4y=-20
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
7x-6y=-30
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
7x=6y-30
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 6y ചേർക്കുക.
x=\frac{1}{7}\left(6y-30\right)
ഇരുവശങ്ങളെയും 7 കൊണ്ട് ഹരിക്കുക.
x=\frac{6}{7}y-\frac{30}{7}
\frac{1}{7}, -30+6y എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{6}{7}y-\frac{30}{7}-4y=-20
x-4y=-20 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{-30+6y}{7} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{22}{7}y-\frac{30}{7}=-20
\frac{6y}{7}, -4y എന്നതിൽ ചേർക്കുക.
-\frac{22}{7}y=-\frac{110}{7}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{30}{7} ചേർക്കുക.
y=5
-\frac{22}{7} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=\frac{6}{7}\times 5-\frac{30}{7}
x=\frac{6}{7}y-\frac{30}{7} എന്നതിലെ y എന്നതിനായി 5 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{30-30}{7}
\frac{6}{7}, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=0
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{30}{7} എന്നത് \frac{30}{7} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=0,y=5
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
7x-6y=-30,x-4y=-20
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-30\\-20\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right))\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right))\left(\begin{matrix}-30\\-20\end{matrix}\right)
\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right))\left(\begin{matrix}-30\\-20\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right))\left(\begin{matrix}-30\\-20\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7\left(-4\right)-\left(-6\right)}&-\frac{-6}{7\left(-4\right)-\left(-6\right)}\\-\frac{1}{7\left(-4\right)-\left(-6\right)}&\frac{7}{7\left(-4\right)-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-30\\-20\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&-\frac{3}{11}\\\frac{1}{22}&-\frac{7}{22}\end{matrix}\right)\left(\begin{matrix}-30\\-20\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\left(-30\right)-\frac{3}{11}\left(-20\right)\\\frac{1}{22}\left(-30\right)-\frac{7}{22}\left(-20\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=0,y=5
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
7x-6y=-30,x-4y=-20
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
7x-6y=-30,7x+7\left(-4\right)y=7\left(-20\right)
7x, x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 1 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 7 കൊണ്ടും ഗുണിക്കുക.
7x-6y=-30,7x-28y=-140
ലഘൂകരിക്കുക.
7x-7x-6y+28y=-30+140
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 7x-6y=-30 എന്നതിൽ നിന്ന് 7x-28y=-140 കുറയ്ക്കുക.
-6y+28y=-30+140
7x, -7x എന്നതിൽ ചേർക്കുക. 7x, -7x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
22y=-30+140
-6y, 28y എന്നതിൽ ചേർക്കുക.
22y=110
-30, 140 എന്നതിൽ ചേർക്കുക.
y=5
ഇരുവശങ്ങളെയും 22 കൊണ്ട് ഹരിക്കുക.
x-4\times 5=-20
x-4y=-20 എന്നതിലെ y എന്നതിനായി 5 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x-20=-20
-4, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=0
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 20 ചേർക്കുക.
x=0,y=5
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.