പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

6x+15y=360,8x+10y=440
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
6x+15y=360
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
6x=-15y+360
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 15y കുറയ്ക്കുക.
x=\frac{1}{6}\left(-15y+360\right)
ഇരുവശങ്ങളെയും 6 കൊണ്ട് ഹരിക്കുക.
x=-\frac{5}{2}y+60
\frac{1}{6}, -15y+360 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
8\left(-\frac{5}{2}y+60\right)+10y=440
8x+10y=440 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -\frac{5y}{2}+60 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-20y+480+10y=440
8, -\frac{5y}{2}+60 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-10y+480=440
-20y, 10y എന്നതിൽ ചേർക്കുക.
-10y=-40
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 480 കുറയ്ക്കുക.
y=4
ഇരുവശങ്ങളെയും -10 കൊണ്ട് ഹരിക്കുക.
x=-\frac{5}{2}\times 4+60
x=-\frac{5}{2}y+60 എന്നതിലെ y എന്നതിനായി 4 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-10+60
-\frac{5}{2}, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=50
60, -10 എന്നതിൽ ചേർക്കുക.
x=50,y=4
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
6x+15y=360,8x+10y=440
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}6&15\\8&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}360\\440\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}6&15\\8&10\end{matrix}\right))\left(\begin{matrix}6&15\\8&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&15\\8&10\end{matrix}\right))\left(\begin{matrix}360\\440\end{matrix}\right)
\left(\begin{matrix}6&15\\8&10\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&15\\8&10\end{matrix}\right))\left(\begin{matrix}360\\440\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&15\\8&10\end{matrix}\right))\left(\begin{matrix}360\\440\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{6\times 10-15\times 8}&-\frac{15}{6\times 10-15\times 8}\\-\frac{8}{6\times 10-15\times 8}&\frac{6}{6\times 10-15\times 8}\end{matrix}\right)\left(\begin{matrix}360\\440\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{1}{4}\\\frac{2}{15}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}360\\440\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 360+\frac{1}{4}\times 440\\\frac{2}{15}\times 360-\frac{1}{10}\times 440\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\4\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=50,y=4
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
6x+15y=360,8x+10y=440
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
8\times 6x+8\times 15y=8\times 360,6\times 8x+6\times 10y=6\times 440
6x, 8x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 8 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 6 കൊണ്ടും ഗുണിക്കുക.
48x+120y=2880,48x+60y=2640
ലഘൂകരിക്കുക.
48x-48x+120y-60y=2880-2640
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 48x+120y=2880 എന്നതിൽ നിന്ന് 48x+60y=2640 കുറയ്ക്കുക.
120y-60y=2880-2640
48x, -48x എന്നതിൽ ചേർക്കുക. 48x, -48x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
60y=2880-2640
120y, -60y എന്നതിൽ ചേർക്കുക.
60y=240
2880, -2640 എന്നതിൽ ചേർക്കുക.
y=4
ഇരുവശങ്ങളെയും 60 കൊണ്ട് ഹരിക്കുക.
8x+10\times 4=440
8x+10y=440 എന്നതിലെ y എന്നതിനായി 4 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
8x+40=440
10, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
8x=400
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 40 കുറയ്ക്കുക.
x=50
ഇരുവശങ്ങളെയും 8 കൊണ്ട് ഹരിക്കുക.
x=50,y=4
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.