പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

5x-6y=34,11x+9y=-14
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
5x-6y=34
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
5x=6y+34
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 6y ചേർക്കുക.
x=\frac{1}{5}\left(6y+34\right)
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
x=\frac{6}{5}y+\frac{34}{5}
\frac{1}{5}, 6y+34 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
11\left(\frac{6}{5}y+\frac{34}{5}\right)+9y=-14
11x+9y=-14 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{6y+34}{5} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{66}{5}y+\frac{374}{5}+9y=-14
11, \frac{6y+34}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{111}{5}y+\frac{374}{5}=-14
\frac{66y}{5}, 9y എന്നതിൽ ചേർക്കുക.
\frac{111}{5}y=-\frac{444}{5}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{374}{5} കുറയ്ക്കുക.
y=-4
\frac{111}{5} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=\frac{6}{5}\left(-4\right)+\frac{34}{5}
x=\frac{6}{5}y+\frac{34}{5} എന്നതിലെ y എന്നതിനായി -4 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{-24+34}{5}
\frac{6}{5}, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=2
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{34}{5} എന്നത് -\frac{24}{5} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=2,y=-4
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
5x-6y=34,11x+9y=-14
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}5&-6\\11&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}34\\-14\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}5&-6\\11&9\end{matrix}\right))\left(\begin{matrix}5&-6\\11&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\11&9\end{matrix}\right))\left(\begin{matrix}34\\-14\end{matrix}\right)
\left(\begin{matrix}5&-6\\11&9\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\11&9\end{matrix}\right))\left(\begin{matrix}34\\-14\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\11&9\end{matrix}\right))\left(\begin{matrix}34\\-14\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5\times 9-\left(-6\times 11\right)}&-\frac{-6}{5\times 9-\left(-6\times 11\right)}\\-\frac{11}{5\times 9-\left(-6\times 11\right)}&\frac{5}{5\times 9-\left(-6\times 11\right)}\end{matrix}\right)\left(\begin{matrix}34\\-14\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{37}&\frac{2}{37}\\-\frac{11}{111}&\frac{5}{111}\end{matrix}\right)\left(\begin{matrix}34\\-14\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{37}\times 34+\frac{2}{37}\left(-14\right)\\-\frac{11}{111}\times 34+\frac{5}{111}\left(-14\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=2,y=-4
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
5x-6y=34,11x+9y=-14
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
11\times 5x+11\left(-6\right)y=11\times 34,5\times 11x+5\times 9y=5\left(-14\right)
5x, 11x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 11 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 5 കൊണ്ടും ഗുണിക്കുക.
55x-66y=374,55x+45y=-70
ലഘൂകരിക്കുക.
55x-55x-66y-45y=374+70
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 55x-66y=374 എന്നതിൽ നിന്ന് 55x+45y=-70 കുറയ്ക്കുക.
-66y-45y=374+70
55x, -55x എന്നതിൽ ചേർക്കുക. 55x, -55x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-111y=374+70
-66y, -45y എന്നതിൽ ചേർക്കുക.
-111y=444
374, 70 എന്നതിൽ ചേർക്കുക.
y=-4
ഇരുവശങ്ങളെയും -111 കൊണ്ട് ഹരിക്കുക.
11x+9\left(-4\right)=-14
11x+9y=-14 എന്നതിലെ y എന്നതിനായി -4 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
11x-36=-14
9, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
11x=22
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 36 ചേർക്കുക.
x=2
ഇരുവശങ്ങളെയും 11 കൊണ്ട് ഹരിക്കുക.
x=2,y=-4
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.