പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

5x+2-y=0
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും y കുറയ്ക്കുക.
5x-y=-2
ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
2x+3-y=0
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും y കുറയ്ക്കുക.
2x-y=-3
ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
5x-y=-2,2x-y=-3
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
5x-y=-2
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
5x=y-2
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും y ചേർക്കുക.
x=\frac{1}{5}\left(y-2\right)
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
x=\frac{1}{5}y-\frac{2}{5}
\frac{1}{5}, y-2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2\left(\frac{1}{5}y-\frac{2}{5}\right)-y=-3
2x-y=-3 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{-2+y}{5} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{2}{5}y-\frac{4}{5}-y=-3
2, \frac{-2+y}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\frac{3}{5}y-\frac{4}{5}=-3
\frac{2y}{5}, -y എന്നതിൽ ചേർക്കുക.
-\frac{3}{5}y=-\frac{11}{5}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{4}{5} ചേർക്കുക.
y=\frac{11}{3}
-\frac{3}{5} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=\frac{1}{5}\times \frac{11}{3}-\frac{2}{5}
x=\frac{1}{5}y-\frac{2}{5} എന്നതിലെ y എന്നതിനായി \frac{11}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{11}{15}-\frac{2}{5}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{1}{5}, \frac{11}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{1}{3}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{2}{5} എന്നത് \frac{11}{15} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{1}{3},y=\frac{11}{3}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
5x+2-y=0
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും y കുറയ്ക്കുക.
5x-y=-2
ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
2x+3-y=0
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും y കുറയ്ക്കുക.
2x-y=-3
ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
5x-y=-2,2x-y=-3
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-3\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}-2\\-3\end{matrix}\right)
\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}-2\\-3\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}-2\\-3\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-\left(-2\right)}&-\frac{-1}{5\left(-1\right)-\left(-2\right)}\\-\frac{2}{5\left(-1\right)-\left(-2\right)}&\frac{5}{5\left(-1\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-3\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{2}{3}&-\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}-2\\-3\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-2\right)-\frac{1}{3}\left(-3\right)\\\frac{2}{3}\left(-2\right)-\frac{5}{3}\left(-3\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\\frac{11}{3}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=\frac{1}{3},y=\frac{11}{3}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
5x+2-y=0
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും y കുറയ്ക്കുക.
5x-y=-2
ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
2x+3-y=0
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും y കുറയ്ക്കുക.
2x-y=-3
ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
5x-y=-2,2x-y=-3
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
5x-2x-y+y=-2+3
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 5x-y=-2 എന്നതിൽ നിന്ന് 2x-y=-3 കുറയ്ക്കുക.
5x-2x=-2+3
-y, y എന്നതിൽ ചേർക്കുക. -y, y എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
3x=-2+3
5x, -2x എന്നതിൽ ചേർക്കുക.
3x=1
-2, 3 എന്നതിൽ ചേർക്കുക.
x=\frac{1}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
2\times \frac{1}{3}-y=-3
2x-y=-3 എന്നതിലെ x എന്നതിനായി \frac{1}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
\frac{2}{3}-y=-3
2, \frac{1}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-y=-\frac{11}{3}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{2}{3} കുറയ്ക്കുക.
y=\frac{11}{3}
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
x=\frac{1}{3},y=\frac{11}{3}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.