\left\{ \begin{array} { l } { 44 = 12 k + b } \\ { 16 = 82 k + b } \end{array} \right.
k, b എന്നതിനായി സോൾവ് ചെയ്യുക
k=-\frac{2}{5}=-0.4
b = \frac{244}{5} = 48\frac{4}{5} = 48.8
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
12k+b=44
ആദ്യ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
82k+b=16
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
12k+b=44,82k+b=16
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
12k+b=44
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള k മാറ്റിനിർത്തിക്കൊണ്ട് k എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
12k=-b+44
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും b കുറയ്ക്കുക.
k=\frac{1}{12}\left(-b+44\right)
ഇരുവശങ്ങളെയും 12 കൊണ്ട് ഹരിക്കുക.
k=-\frac{1}{12}b+\frac{11}{3}
\frac{1}{12}, -b+44 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
82\left(-\frac{1}{12}b+\frac{11}{3}\right)+b=16
82k+b=16 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ k എന്നതിനായി -\frac{b}{12}+\frac{11}{3} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{41}{6}b+\frac{902}{3}+b=16
82, -\frac{b}{12}+\frac{11}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\frac{35}{6}b+\frac{902}{3}=16
-\frac{41b}{6}, b എന്നതിൽ ചേർക്കുക.
-\frac{35}{6}b=-\frac{854}{3}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{902}{3} കുറയ്ക്കുക.
b=\frac{244}{5}
-\frac{35}{6} കൊണ്ട് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്റെ പരസ്പരപൂരകത്തിന്റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
k=-\frac{1}{12}\times \frac{244}{5}+\frac{11}{3}
k=-\frac{1}{12}b+\frac{11}{3} എന്നതിലെ b എന്നതിനായി \frac{244}{5} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് k എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
k=-\frac{61}{15}+\frac{11}{3}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{1}{12}, \frac{244}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
k=-\frac{2}{5}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{11}{3} എന്നത് -\frac{61}{15} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
k=-\frac{2}{5},b=\frac{244}{5}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
12k+b=44
ആദ്യ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
82k+b=16
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
12k+b=44,82k+b=16
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}12&1\\82&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}44\\16\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}12&1\\82&1\end{matrix}\right))\left(\begin{matrix}12&1\\82&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&1\\82&1\end{matrix}\right))\left(\begin{matrix}44\\16\end{matrix}\right)
\left(\begin{matrix}12&1\\82&1\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&1\\82&1\end{matrix}\right))\left(\begin{matrix}44\\16\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&1\\82&1\end{matrix}\right))\left(\begin{matrix}44\\16\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12-82}&-\frac{1}{12-82}\\-\frac{82}{12-82}&\frac{12}{12-82}\end{matrix}\right)\left(\begin{matrix}44\\16\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{70}&\frac{1}{70}\\\frac{41}{35}&-\frac{6}{35}\end{matrix}\right)\left(\begin{matrix}44\\16\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{70}\times 44+\frac{1}{70}\times 16\\\frac{41}{35}\times 44-\frac{6}{35}\times 16\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\\\frac{244}{5}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
k=-\frac{2}{5},b=\frac{244}{5}
k, b എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
12k+b=44
ആദ്യ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
82k+b=16
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
12k+b=44,82k+b=16
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
12k-82k+b-b=44-16
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 12k+b=44 എന്നതിൽ നിന്ന് 82k+b=16 കുറയ്ക്കുക.
12k-82k=44-16
b, -b എന്നതിൽ ചേർക്കുക. b, -b എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-70k=44-16
12k, -82k എന്നതിൽ ചേർക്കുക.
-70k=28
44, -16 എന്നതിൽ ചേർക്കുക.
k=-\frac{2}{5}
ഇരുവശങ്ങളെയും -70 കൊണ്ട് ഹരിക്കുക.
82\left(-\frac{2}{5}\right)+b=16
82k+b=16 എന്നതിലെ k എന്നതിനായി -\frac{2}{5} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് b എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
-\frac{164}{5}+b=16
82, -\frac{2}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
b=\frac{244}{5}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{164}{5} ചേർക്കുക.
k=-\frac{2}{5},b=\frac{244}{5}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}