പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x-2y=-3,2x+4y=2
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
3x-2y=-3
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
3x=2y-3
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 2y ചേർക്കുക.
x=\frac{1}{3}\left(2y-3\right)
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x=\frac{2}{3}y-1
\frac{1}{3}, 2y-3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2\left(\frac{2}{3}y-1\right)+4y=2
2x+4y=2 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{2y}{3}-1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{4}{3}y-2+4y=2
2, \frac{2y}{3}-1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{16}{3}y-2=2
\frac{4y}{3}, 4y എന്നതിൽ ചേർക്കുക.
\frac{16}{3}y=4
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 2 ചേർക്കുക.
y=\frac{3}{4}
\frac{16}{3} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=\frac{2}{3}\times \frac{3}{4}-1
x=\frac{2}{3}y-1 എന്നതിലെ y എന്നതിനായി \frac{3}{4} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{1}{2}-1
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{2}{3}, \frac{3}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=-\frac{1}{2}
-1, \frac{1}{2} എന്നതിൽ ചേർക്കുക.
x=-\frac{1}{2},y=\frac{3}{4}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
3x-2y=-3,2x+4y=2
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}3&-2\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}3&-2\\2&4\end{matrix}\right))\left(\begin{matrix}3&-2\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&4\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
\left(\begin{matrix}3&-2\\2&4\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&4\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&4\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-\left(-2\times 2\right)}&-\frac{-2}{3\times 4-\left(-2\times 2\right)}\\-\frac{2}{3\times 4-\left(-2\times 2\right)}&\frac{3}{3\times 4-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{8}\\-\frac{1}{8}&\frac{3}{16}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-3\right)+\frac{1}{8}\times 2\\-\frac{1}{8}\left(-3\right)+\frac{3}{16}\times 2\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\\frac{3}{4}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-\frac{1}{2},y=\frac{3}{4}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
3x-2y=-3,2x+4y=2
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
2\times 3x+2\left(-2\right)y=2\left(-3\right),3\times 2x+3\times 4y=3\times 2
3x, 2x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും ഗുണിക്കുക.
6x-4y=-6,6x+12y=6
ലഘൂകരിക്കുക.
6x-6x-4y-12y=-6-6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 6x-4y=-6 എന്നതിൽ നിന്ന് 6x+12y=6 കുറയ്ക്കുക.
-4y-12y=-6-6
6x, -6x എന്നതിൽ ചേർക്കുക. 6x, -6x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-16y=-6-6
-4y, -12y എന്നതിൽ ചേർക്കുക.
-16y=-12
-6, -6 എന്നതിൽ ചേർക്കുക.
y=\frac{3}{4}
ഇരുവശങ്ങളെയും -16 കൊണ്ട് ഹരിക്കുക.
2x+4\times \frac{3}{4}=2
2x+4y=2 എന്നതിലെ y എന്നതിനായി \frac{3}{4} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
2x+3=2
4, \frac{3}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
2x=-1
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക.
x=-\frac{1}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=-\frac{1}{2},y=\frac{3}{4}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.