പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x+6=2y
ആദ്യ സമവാക്യം പരിഗണിക്കുക. x+2 കൊണ്ട് 3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x+6-2y=0
ഇരുവശങ്ങളിൽ നിന്നും 2y കുറയ്ക്കുക.
3x-2y=-6
ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
2cy+5-7x=0
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 7x കുറയ്ക്കുക.
2cy-7x=-5
ഇരുവശങ്ങളിൽ നിന്നും 5 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
3x-2y=-6,-7x+2cy=-5
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
3x-2y=-6
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
3x=2y-6
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 2y ചേർക്കുക.
x=\frac{1}{3}\left(2y-6\right)
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x=\frac{2}{3}y-2
\frac{1}{3}, -6+2y എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-7\left(\frac{2}{3}y-2\right)+2cy=-5
-7x+2cy=-5 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{2y}{3}-2 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{14}{3}y+14+2cy=-5
-7, \frac{2y}{3}-2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\left(2c-\frac{14}{3}\right)y+14=-5
-\frac{14y}{3}, 2cy എന്നതിൽ ചേർക്കുക.
\left(2c-\frac{14}{3}\right)y=-19
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 14 കുറയ്ക്കുക.
y=-\frac{57}{2\left(3c-7\right)}
ഇരുവശങ്ങളെയും -\frac{14}{3}+2c കൊണ്ട് ഹരിക്കുക.
x=\frac{2}{3}\left(-\frac{57}{2\left(3c-7\right)}\right)-2
x=\frac{2}{3}y-2 എന്നതിലെ y എന്നതിനായി -\frac{57}{2\left(-7+3c\right)} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-\frac{19}{3c-7}-2
\frac{2}{3}, -\frac{57}{2\left(-7+3c\right)} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-\frac{6c+5}{3c-7}
-2, -\frac{19}{-7+3c} എന്നതിൽ ചേർക്കുക.
x=-\frac{6c+5}{3c-7},y=-\frac{57}{2\left(3c-7\right)}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
3x+6=2y
ആദ്യ സമവാക്യം പരിഗണിക്കുക. x+2 കൊണ്ട് 3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x+6-2y=0
ഇരുവശങ്ങളിൽ നിന്നും 2y കുറയ്ക്കുക.
3x-2y=-6
ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
2cy+5-7x=0
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 7x കുറയ്ക്കുക.
2cy-7x=-5
ഇരുവശങ്ങളിൽ നിന്നും 5 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
3x-2y=-6,-7x+2cy=-5
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-5\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}-6\\-5\end{matrix}\right)
\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}-6\\-5\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}-6\\-5\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2c}{3\times 2c-\left(-2\left(-7\right)\right)}&-\frac{-2}{3\times 2c-\left(-2\left(-7\right)\right)}\\-\frac{-7}{3\times 2c-\left(-2\left(-7\right)\right)}&\frac{3}{3\times 2c-\left(-2\left(-7\right)\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-5\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{c}{3c-7}&\frac{1}{3c-7}\\\frac{7}{2\left(3c-7\right)}&\frac{3}{2\left(3c-7\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-5\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{c}{3c-7}\left(-6\right)+\frac{1}{3c-7}\left(-5\right)\\\frac{7}{2\left(3c-7\right)}\left(-6\right)+\frac{3}{2\left(3c-7\right)}\left(-5\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6c+5}{3c-7}\\-\frac{57}{2\left(3c-7\right)}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-\frac{6c+5}{3c-7},y=-\frac{57}{2\left(3c-7\right)}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
3x+6=2y
ആദ്യ സമവാക്യം പരിഗണിക്കുക. x+2 കൊണ്ട് 3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x+6-2y=0
ഇരുവശങ്ങളിൽ നിന്നും 2y കുറയ്ക്കുക.
3x-2y=-6
ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
2cy+5-7x=0
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 7x കുറയ്ക്കുക.
2cy-7x=-5
ഇരുവശങ്ങളിൽ നിന്നും 5 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
3x-2y=-6,-7x+2cy=-5
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
-7\times 3x-7\left(-2\right)y=-7\left(-6\right),3\left(-7\right)x+3\times 2cy=3\left(-5\right)
3x, -7x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -7 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും ഗുണിക്കുക.
-21x+14y=42,-21x+6cy=-15
ലഘൂകരിക്കുക.
-21x+21x+14y+\left(-6c\right)y=42+15
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -21x+14y=42 എന്നതിൽ നിന്ന് -21x+6cy=-15 കുറയ്ക്കുക.
14y+\left(-6c\right)y=42+15
-21x, 21x എന്നതിൽ ചേർക്കുക. -21x, 21x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
\left(14-6c\right)y=42+15
14y, -6cy എന്നതിൽ ചേർക്കുക.
\left(14-6c\right)y=57
42, 15 എന്നതിൽ ചേർക്കുക.
y=\frac{57}{2\left(7-3c\right)}
ഇരുവശങ്ങളെയും 14-6c കൊണ്ട് ഹരിക്കുക.
-7x+2c\times \frac{57}{2\left(7-3c\right)}=-5
-7x+2cy=-5 എന്നതിലെ y എന്നതിനായി \frac{57}{2\left(7-3c\right)} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
-7x+\frac{57c}{7-3c}=-5
2c, \frac{57}{2\left(7-3c\right)} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-7x=-\frac{7\left(6c+5\right)}{7-3c}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{57c}{7-3c} കുറയ്ക്കുക.
x=\frac{6c+5}{7-3c}
ഇരുവശങ്ങളെയും -7 കൊണ്ട് ഹരിക്കുക.
x=\frac{6c+5}{7-3c},y=\frac{57}{2\left(7-3c\right)}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.