\left\{ \begin{array} { l } { 2 y = 3 x - 6 } \\ { 5 x + 4 y = 8 } \end{array} \right.
y, x എന്നതിനായി സോൾവ് ചെയ്യുക
x = \frac{20}{11} = 1\frac{9}{11} \approx 1.818181818
y=-\frac{3}{11}\approx -0.272727273
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
2y-3x=-6
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 3x കുറയ്ക്കുക.
2y-3x=-6,4y+5x=8
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
2y-3x=-6
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള y മാറ്റിനിർത്തിക്കൊണ്ട് y എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
2y=3x-6
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 3x ചേർക്കുക.
y=\frac{1}{2}\left(3x-6\right)
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
y=\frac{3}{2}x-3
\frac{1}{2}, -6+3x എന്നിവ തമ്മിൽ ഗുണിക്കുക.
4\left(\frac{3}{2}x-3\right)+5x=8
4y+5x=8 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ y എന്നതിനായി \frac{3x}{2}-3 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
6x-12+5x=8
4, \frac{3x}{2}-3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
11x-12=8
6x, 5x എന്നതിൽ ചേർക്കുക.
11x=20
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 12 ചേർക്കുക.
x=\frac{20}{11}
ഇരുവശങ്ങളെയും 11 കൊണ്ട് ഹരിക്കുക.
y=\frac{3}{2}\times \frac{20}{11}-3
y=\frac{3}{2}x-3 എന്നതിലെ x എന്നതിനായി \frac{20}{11} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
y=\frac{30}{11}-3
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{3}{2}, \frac{20}{11} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
y=-\frac{3}{11}
-3, \frac{30}{11} എന്നതിൽ ചേർക്കുക.
y=-\frac{3}{11},x=\frac{20}{11}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
2y-3x=-6
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 3x കുറയ്ക്കുക.
2y-3x=-6,4y+5x=8
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}2&-3\\4&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-6\\8\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}2&-3\\4&5\end{matrix}\right))\left(\begin{matrix}2&-3\\4&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&5\end{matrix}\right))\left(\begin{matrix}-6\\8\end{matrix}\right)
\left(\begin{matrix}2&-3\\4&5\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&5\end{matrix}\right))\left(\begin{matrix}-6\\8\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&5\end{matrix}\right))\left(\begin{matrix}-6\\8\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-3\times 4\right)}&-\frac{-3}{2\times 5-\left(-3\times 4\right)}\\-\frac{4}{2\times 5-\left(-3\times 4\right)}&\frac{2}{2\times 5-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-6\\8\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{22}&\frac{3}{22}\\-\frac{2}{11}&\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}-6\\8\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{22}\left(-6\right)+\frac{3}{22}\times 8\\-\frac{2}{11}\left(-6\right)+\frac{1}{11}\times 8\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{11}\\\frac{20}{11}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
y=-\frac{3}{11},x=\frac{20}{11}
y, x എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
2y-3x=-6
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 3x കുറയ്ക്കുക.
2y-3x=-6,4y+5x=8
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
4\times 2y+4\left(-3\right)x=4\left(-6\right),2\times 4y+2\times 5x=2\times 8
2y, 4y എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 4 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും ഗുണിക്കുക.
8y-12x=-24,8y+10x=16
ലഘൂകരിക്കുക.
8y-8y-12x-10x=-24-16
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 8y-12x=-24 എന്നതിൽ നിന്ന് 8y+10x=16 കുറയ്ക്കുക.
-12x-10x=-24-16
8y, -8y എന്നതിൽ ചേർക്കുക. 8y, -8y എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-22x=-24-16
-12x, -10x എന്നതിൽ ചേർക്കുക.
-22x=-40
-24, -16 എന്നതിൽ ചേർക്കുക.
x=\frac{20}{11}
ഇരുവശങ്ങളെയും -22 കൊണ്ട് ഹരിക്കുക.
4y+5\times \frac{20}{11}=8
4y+5x=8 എന്നതിലെ x എന്നതിനായി \frac{20}{11} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് y എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
4y+\frac{100}{11}=8
5, \frac{20}{11} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
4y=-\frac{12}{11}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{100}{11} കുറയ്ക്കുക.
y=-\frac{3}{11}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
y=-\frac{3}{11},x=\frac{20}{11}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}