\left\{ \begin{array} { l } { 2 x + 14 y = - 28 } \\ { - 4 x - 14 y = 28 } \end{array} \right.
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
x=0
y=-2
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
2x+14y=-28,-4x-14y=28
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
2x+14y=-28
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
2x=-14y-28
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 14y കുറയ്ക്കുക.
x=\frac{1}{2}\left(-14y-28\right)
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=-7y-14
\frac{1}{2}, -14y-28 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-4\left(-7y-14\right)-14y=28
-4x-14y=28 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -7y-14 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
28y+56-14y=28
-4, -7y-14 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
14y+56=28
28y, -14y എന്നതിൽ ചേർക്കുക.
14y=-28
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 56 കുറയ്ക്കുക.
y=-2
ഇരുവശങ്ങളെയും 14 കൊണ്ട് ഹരിക്കുക.
x=-7\left(-2\right)-14
x=-7y-14 എന്നതിലെ y എന്നതിനായി -2 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=14-14
-7, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=0
-14, 14 എന്നതിൽ ചേർക്കുക.
x=0,y=-2
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
2x+14y=-28,-4x-14y=28
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-28\\28\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{14}{2\left(-14\right)-14\left(-4\right)}&-\frac{14}{2\left(-14\right)-14\left(-4\right)}\\-\frac{-4}{2\left(-14\right)-14\left(-4\right)}&\frac{2}{2\left(-14\right)-14\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-28\\28\end{matrix}\right)
2\times 2-ന് മാട്രിക്സിന് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) വിപരീത മാട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മാട്രിക്സ് സമവാക്യം ഒരു മാട്രിക്സ് പെരുക്ക പ്രശ്നമായി വീണ്ടും എഴുതാനാവും.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&-\frac{1}{2}\\\frac{1}{7}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}-28\\28\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-28\right)-\frac{1}{2}\times 28\\\frac{1}{7}\left(-28\right)+\frac{1}{14}\times 28\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=0,y=-2
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
2x+14y=-28,-4x-14y=28
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
-4\times 2x-4\times 14y=-4\left(-28\right),2\left(-4\right)x+2\left(-14\right)y=2\times 28
2x, -4x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -4 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും ഗുണിക്കുക.
-8x-56y=112,-8x-28y=56
ലഘൂകരിക്കുക.
-8x+8x-56y+28y=112-56
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -8x-56y=112 എന്നതിൽ നിന്ന് -8x-28y=56 കുറയ്ക്കുക.
-56y+28y=112-56
-8x, 8x എന്നതിൽ ചേർക്കുക. -8x, 8x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-28y=112-56
-56y, 28y എന്നതിൽ ചേർക്കുക.
-28y=56
112, -56 എന്നതിൽ ചേർക്കുക.
y=-2
ഇരുവശങ്ങളെയും -28 കൊണ്ട് ഹരിക്കുക.
-4x-14\left(-2\right)=28
-4x-14y=28 എന്നതിലെ y എന്നതിനായി -2 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
-4x+28=28
-14, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-4x=0
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 28 കുറയ്ക്കുക.
x=0
ഇരുവശങ്ങളെയും -4 കൊണ്ട് ഹരിക്കുക.
x=0,y=-2
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}