പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

0.4x+0.3y=0.7,11x-10y=1
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
0.4x+0.3y=0.7
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
0.4x=-0.3y+0.7
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{3y}{10} കുറയ്ക്കുക.
x=2.5\left(-0.3y+0.7\right)
0.4 കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-0.75y+1.75
2.5, \frac{-3y+7}{10} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
11\left(-0.75y+1.75\right)-10y=1
11x-10y=1 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{-3y+7}{4} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-8.25y+19.25-10y=1
11, \frac{-3y+7}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-18.25y+19.25=1
-\frac{33y}{4}, -10y എന്നതിൽ ചേർക്കുക.
-18.25y=-18.25
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 19.25 കുറയ്ക്കുക.
y=1
-18.25 കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=\frac{-3+7}{4}
x=-0.75y+1.75 എന്നതിലെ y എന്നതിനായി 1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=1
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ 1.75 എന്നത് -0.75 എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=1,y=1
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
0.4x+0.3y=0.7,11x-10y=1
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0.7\\1\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right))\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right))\left(\begin{matrix}0.7\\1\end{matrix}\right)
\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right))\left(\begin{matrix}0.7\\1\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right))\left(\begin{matrix}0.7\\1\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{0.4\left(-10\right)-0.3\times 11}&-\frac{0.3}{0.4\left(-10\right)-0.3\times 11}\\-\frac{11}{0.4\left(-10\right)-0.3\times 11}&\frac{0.4}{0.4\left(-10\right)-0.3\times 11}\end{matrix}\right)\left(\begin{matrix}0.7\\1\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{100}{73}&\frac{3}{73}\\\frac{110}{73}&-\frac{4}{73}\end{matrix}\right)\left(\begin{matrix}0.7\\1\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{100}{73}\times 0.7+\frac{3}{73}\\\frac{110}{73}\times 0.7-\frac{4}{73}\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=1,y=1
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
0.4x+0.3y=0.7,11x-10y=1
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
11\times 0.4x+11\times 0.3y=11\times 0.7,0.4\times 11x+0.4\left(-10\right)y=0.4
\frac{2x}{5}, 11x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 11 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 0.4 കൊണ്ടും ഗുണിക്കുക.
4.4x+3.3y=7.7,4.4x-4y=0.4
ലഘൂകരിക്കുക.
4.4x-4.4x+3.3y+4y=7.7-0.4
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 4.4x+3.3y=7.7 എന്നതിൽ നിന്ന് 4.4x-4y=0.4 കുറയ്ക്കുക.
3.3y+4y=7.7-0.4
\frac{22x}{5}, -\frac{22x}{5} എന്നതിൽ ചേർക്കുക. \frac{22x}{5}, -\frac{22x}{5} എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
7.3y=7.7-0.4
\frac{33y}{10}, 4y എന്നതിൽ ചേർക്കുക.
7.3y=7.3
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ 7.7 എന്നത് -0.4 എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
y=1
7.3 കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
11x-10=1
11x-10y=1 എന്നതിലെ y എന്നതിനായി 1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
11x=11
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 10 ചേർക്കുക.
x=1
ഇരുവശങ്ങളെയും 11 കൊണ്ട് ഹരിക്കുക.
x=1,y=1
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.