പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x=ey
ആദ്യ സമവാക്യം പരിഗണിക്കുക. പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, y എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും y കൊണ്ട് ഗുണിക്കുക.
ey+y=1
x+y=1 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി ey സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\left(e+1\right)y=1
ey, y എന്നതിൽ ചേർക്കുക.
y=\frac{1}{e+1}
ഇരുവശങ്ങളെയും e+1 കൊണ്ട് ഹരിക്കുക.
x=e\times \frac{1}{e+1}
x=ey എന്നതിലെ y എന്നതിനായി \frac{1}{e+1} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{e}{e+1}
e, \frac{1}{e+1} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{e}{e+1},y=\frac{1}{e+1}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
x=\frac{e}{e+1},y=\frac{1}{e+1}\text{, }y\neq 0
y എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.
x=ey
ആദ്യ സമവാക്യം പരിഗണിക്കുക. പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, y എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും y കൊണ്ട് ഗുണിക്കുക.
x-ey=0
ഇരുവശങ്ങളിൽ നിന്നും ey കുറയ്ക്കുക.
x+\left(-e\right)y=0,x+y=1
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&-e\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&-e\\1&1\end{matrix}\right))\left(\begin{matrix}1&-e\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-e\\1&1\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
\left(\begin{matrix}1&-e\\1&1\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-e\\1&1\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-e\\1&1\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-e\right)}&-\frac{-e}{1-\left(-e\right)}\\-\frac{1}{1-\left(-e\right)}&\frac{1}{1-\left(-e\right)}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{e+1}&\frac{e}{e+1}\\-\frac{1}{e+1}&\frac{1}{e+1}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{e}{e+1}\\\frac{1}{e+1}\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
x=\frac{e}{e+1},y=\frac{1}{e+1}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
x=\frac{e}{e+1},y=\frac{1}{e+1}\text{, }y\neq 0
y എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.
x=ey
ആദ്യ സമവാക്യം പരിഗണിക്കുക. പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, y എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും y കൊണ്ട് ഗുണിക്കുക.
x-ey=0
ഇരുവശങ്ങളിൽ നിന്നും ey കുറയ്ക്കുക.
x+\left(-e\right)y=0,x+y=1
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
x-x+\left(-e\right)y-y=-1
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് x+\left(-e\right)y=0 എന്നതിൽ നിന്ന് x+y=1 കുറയ്ക്കുക.
\left(-e\right)y-y=-1
x, -x എന്നതിൽ ചേർക്കുക. x, -x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
\left(-e-1\right)y=-1
-ey, -y എന്നതിൽ ചേർക്കുക.
y=\frac{1}{e+1}
ഇരുവശങ്ങളെയും -e-1 കൊണ്ട് ഹരിക്കുക.
x+\frac{1}{e+1}=1
x+y=1 എന്നതിലെ y എന്നതിനായി \frac{1}{1+e} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{e}{e+1}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{1+e} കുറയ്ക്കുക.
x=\frac{e}{e+1},y=\frac{1}{e+1}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
x=\frac{e}{e+1},y=\frac{1}{e+1}\text{, }y\neq 0
y എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.