\left\{ \begin{array} { l } { \frac { x } { 6 } - y = - 1 } \\ { 3 x - 2 y = 6 } \end{array} \right.
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
x=3
y = \frac{3}{2} = 1\frac{1}{2} = 1.5
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{1}{6}x-y=-1,3x-2y=6
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{1}{6}x-y=-1
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
\frac{1}{6}x=y-1
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും y ചേർക്കുക.
x=6\left(y-1\right)
ഇരുവശങ്ങളെയും 6 കൊണ്ട് ഗുണിക്കുക.
x=6y-6
6, y-1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3\left(6y-6\right)-2y=6
3x-2y=6 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -6+6y സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
18y-18-2y=6
3, -6+6y എന്നിവ തമ്മിൽ ഗുണിക്കുക.
16y-18=6
18y, -2y എന്നതിൽ ചേർക്കുക.
16y=24
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 18 ചേർക്കുക.
y=\frac{3}{2}
ഇരുവശങ്ങളെയും 16 കൊണ്ട് ഹരിക്കുക.
x=6\times \frac{3}{2}-6
x=6y-6 എന്നതിലെ y എന്നതിനായി \frac{3}{2} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=9-6
6, \frac{3}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=3
-6, 9 എന്നതിൽ ചേർക്കുക.
x=3,y=\frac{3}{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
\frac{1}{6}x-y=-1,3x-2y=6
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\6\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}-1\\6\end{matrix}\right)
\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}-1\\6\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}-1\\6\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{\frac{1}{6}\left(-2\right)-\left(-3\right)}&-\frac{-1}{\frac{1}{6}\left(-2\right)-\left(-3\right)}\\-\frac{3}{\frac{1}{6}\left(-2\right)-\left(-3\right)}&\frac{\frac{1}{6}}{\frac{1}{6}\left(-2\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-1\\6\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}&\frac{3}{8}\\-\frac{9}{8}&\frac{1}{16}\end{matrix}\right)\left(\begin{matrix}-1\\6\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}\left(-1\right)+\frac{3}{8}\times 6\\-\frac{9}{8}\left(-1\right)+\frac{1}{16}\times 6\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\\frac{3}{2}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=3,y=\frac{3}{2}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
\frac{1}{6}x-y=-1,3x-2y=6
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
3\times \frac{1}{6}x+3\left(-1\right)y=3\left(-1\right),\frac{1}{6}\times 3x+\frac{1}{6}\left(-2\right)y=\frac{1}{6}\times 6
\frac{x}{6}, 3x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും \frac{1}{6} കൊണ്ടും ഗുണിക്കുക.
\frac{1}{2}x-3y=-3,\frac{1}{2}x-\frac{1}{3}y=1
ലഘൂകരിക്കുക.
\frac{1}{2}x-\frac{1}{2}x-3y+\frac{1}{3}y=-3-1
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് \frac{1}{2}x-3y=-3 എന്നതിൽ നിന്ന് \frac{1}{2}x-\frac{1}{3}y=1 കുറയ്ക്കുക.
-3y+\frac{1}{3}y=-3-1
\frac{x}{2}, -\frac{x}{2} എന്നതിൽ ചേർക്കുക. \frac{x}{2}, -\frac{x}{2} എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-\frac{8}{3}y=-3-1
-3y, \frac{y}{3} എന്നതിൽ ചേർക്കുക.
-\frac{8}{3}y=-4
-3, -1 എന്നതിൽ ചേർക്കുക.
y=\frac{3}{2}
-\frac{8}{3} കൊണ്ട് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്റെ പരസ്പരപൂരകത്തിന്റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
3x-2\times \frac{3}{2}=6
3x-2y=6 എന്നതിലെ y എന്നതിനായി \frac{3}{2} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
3x-3=6
-2, \frac{3}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3x=9
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 3 ചേർക്കുക.
x=3
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x=3,y=\frac{3}{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}