\left\{ \begin{array} { l } { \frac { x + y } { 8 } - \frac { y - x } { 2 } = 1 } \\ { \frac { 3 x - 1 } { 6 } + \frac { y + 3 } { 3 } = \frac { 25 } { 6 } } \end{array} \right.
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
x=4
y=4
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x+y-4\left(y-x\right)=8
ആദ്യ സമവാക്യം പരിഗണിക്കുക. 8,2 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 8 ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
x+y-4y+4x=8
y-x കൊണ്ട് -4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x-3y+4x=8
-3y നേടാൻ y, -4y എന്നിവ യോജിപ്പിക്കുക.
5x-3y=8
5x നേടാൻ x, 4x എന്നിവ യോജിപ്പിക്കുക.
3x-1+2\left(y+3\right)=25
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. 6,3 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 6 ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3x-1+2y+6=25
y+3 കൊണ്ട് 2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x+5+2y=25
5 ലഭ്യമാക്കാൻ -1, 6 എന്നിവ ചേർക്കുക.
3x+2y=25-5
ഇരുവശങ്ങളിൽ നിന്നും 5 കുറയ്ക്കുക.
3x+2y=20
20 നേടാൻ 25 എന്നതിൽ നിന്ന് 5 കുറയ്ക്കുക.
5x-3y=8,3x+2y=20
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
5x-3y=8
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
5x=3y+8
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 3y ചേർക്കുക.
x=\frac{1}{5}\left(3y+8\right)
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
x=\frac{3}{5}y+\frac{8}{5}
\frac{1}{5}, 3y+8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3\left(\frac{3}{5}y+\frac{8}{5}\right)+2y=20
3x+2y=20 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി \frac{3y+8}{5} സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{9}{5}y+\frac{24}{5}+2y=20
3, \frac{3y+8}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{19}{5}y+\frac{24}{5}=20
\frac{9y}{5}, 2y എന്നതിൽ ചേർക്കുക.
\frac{19}{5}y=\frac{76}{5}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{24}{5} കുറയ്ക്കുക.
y=4
\frac{19}{5} കൊണ്ട് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്റെ പരസ്പരപൂരകത്തിന്റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=\frac{3}{5}\times 4+\frac{8}{5}
x=\frac{3}{5}y+\frac{8}{5} എന്നതിലെ y എന്നതിനായി 4 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{12+8}{5}
\frac{3}{5}, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=4
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{8}{5} എന്നത് \frac{12}{5} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=4,y=4
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
x+y-4\left(y-x\right)=8
ആദ്യ സമവാക്യം പരിഗണിക്കുക. 8,2 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 8 ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
x+y-4y+4x=8
y-x കൊണ്ട് -4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x-3y+4x=8
-3y നേടാൻ y, -4y എന്നിവ യോജിപ്പിക്കുക.
5x-3y=8
5x നേടാൻ x, 4x എന്നിവ യോജിപ്പിക്കുക.
3x-1+2\left(y+3\right)=25
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. 6,3 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 6 ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3x-1+2y+6=25
y+3 കൊണ്ട് 2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x+5+2y=25
5 ലഭ്യമാക്കാൻ -1, 6 എന്നിവ ചേർക്കുക.
3x+2y=25-5
ഇരുവശങ്ങളിൽ നിന്നും 5 കുറയ്ക്കുക.
3x+2y=20
20 നേടാൻ 25 എന്നതിൽ നിന്ന് 5 കുറയ്ക്കുക.
5x-3y=8,3x+2y=20
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}5&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\20\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}5&-3\\3&2\end{matrix}\right))\left(\begin{matrix}5&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\3&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
\left(\begin{matrix}5&-3\\3&2\end{matrix}\right) എന്നതിന്റെ വിപരീത മെട്രിക്സ് കൊണ്ട് സമവാക്യത്തിന്റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\3&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
ഒരു മെട്രിക്സിന്റെയും അതിന്റെ വിപരീതത്തിന്റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\3&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-3\times 3\right)}&-\frac{-3}{5\times 2-\left(-3\times 3\right)}\\-\frac{3}{5\times 2-\left(-3\times 3\right)}&\frac{5}{5\times 2-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}8\\20\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}&\frac{3}{19}\\-\frac{3}{19}&\frac{5}{19}\end{matrix}\right)\left(\begin{matrix}8\\20\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\times 8+\frac{3}{19}\times 20\\-\frac{3}{19}\times 8+\frac{5}{19}\times 20\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=4,y=4
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
x+y-4\left(y-x\right)=8
ആദ്യ സമവാക്യം പരിഗണിക്കുക. 8,2 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 8 ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
x+y-4y+4x=8
y-x കൊണ്ട് -4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x-3y+4x=8
-3y നേടാൻ y, -4y എന്നിവ യോജിപ്പിക്കുക.
5x-3y=8
5x നേടാൻ x, 4x എന്നിവ യോജിപ്പിക്കുക.
3x-1+2\left(y+3\right)=25
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. 6,3 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 6 ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3x-1+2y+6=25
y+3 കൊണ്ട് 2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x+5+2y=25
5 ലഭ്യമാക്കാൻ -1, 6 എന്നിവ ചേർക്കുക.
3x+2y=25-5
ഇരുവശങ്ങളിൽ നിന്നും 5 കുറയ്ക്കുക.
3x+2y=20
20 നേടാൻ 25 എന്നതിൽ നിന്ന് 5 കുറയ്ക്കുക.
5x-3y=8,3x+2y=20
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
3\times 5x+3\left(-3\right)y=3\times 8,5\times 3x+5\times 2y=5\times 20
5x, 3x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും രണ്ടാമത്തേതിന്റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 5 കൊണ്ടും ഗുണിക്കുക.
15x-9y=24,15x+10y=100
ലഘൂകരിക്കുക.
15x-15x-9y-10y=24-100
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 15x-9y=24 എന്നതിൽ നിന്ന് 15x+10y=100 കുറയ്ക്കുക.
-9y-10y=24-100
15x, -15x എന്നതിൽ ചേർക്കുക. 15x, -15x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-19y=24-100
-9y, -10y എന്നതിൽ ചേർക്കുക.
-19y=-76
24, -100 എന്നതിൽ ചേർക്കുക.
y=4
ഇരുവശങ്ങളെയും -19 കൊണ്ട് ഹരിക്കുക.
3x+2\times 4=20
3x+2y=20 എന്നതിലെ y എന്നതിനായി 4 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
3x+8=20
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3x=12
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 8 കുറയ്ക്കുക.
x=4
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x=4,y=4
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}