പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{3}{2}x+\frac{1}{3}y=1,\frac{1}{4}x-\frac{1}{6}y=-\frac{3}{2}
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
\frac{3}{2}x+\frac{1}{3}y=1
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
\frac{3}{2}x=-\frac{1}{3}y+1
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{y}{3} കുറയ്ക്കുക.
x=\frac{2}{3}\left(-\frac{1}{3}y+1\right)
\frac{3}{2} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-\frac{2}{9}y+\frac{2}{3}
\frac{2}{3}, -\frac{y}{3}+1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{1}{4}\left(-\frac{2}{9}y+\frac{2}{3}\right)-\frac{1}{6}y=-\frac{3}{2}
\frac{1}{4}x-\frac{1}{6}y=-\frac{3}{2} എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -\frac{2y}{9}+\frac{2}{3} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-\frac{1}{18}y+\frac{1}{6}-\frac{1}{6}y=-\frac{3}{2}
\frac{1}{4}, -\frac{2y}{9}+\frac{2}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-\frac{2}{9}y+\frac{1}{6}=-\frac{3}{2}
-\frac{y}{18}, -\frac{y}{6} എന്നതിൽ ചേർക്കുക.
-\frac{2}{9}y=-\frac{5}{3}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{6} കുറയ്ക്കുക.
y=\frac{15}{2}
-\frac{2}{9} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x=-\frac{2}{9}\times \frac{15}{2}+\frac{2}{3}
x=-\frac{2}{9}y+\frac{2}{3} എന്നതിലെ y എന്നതിനായി \frac{15}{2} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{-5+2}{3}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{2}{9}, \frac{15}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=-1
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{2}{3} എന്നത് -\frac{5}{3} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=-1,y=\frac{15}{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
\frac{3}{2}x+\frac{1}{3}y=1,\frac{1}{4}x-\frac{1}{6}y=-\frac{3}{2}
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}\frac{3}{2}&\frac{1}{3}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}\frac{3}{2}&\frac{1}{3}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}\frac{3}{2}&\frac{1}{3}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&\frac{1}{3}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
\left(\begin{matrix}\frac{3}{2}&\frac{1}{3}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&\frac{1}{3}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&\frac{1}{3}\\\frac{1}{4}&-\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{6}}{\frac{3}{2}\left(-\frac{1}{6}\right)-\frac{1}{3}\times \frac{1}{4}}&-\frac{\frac{1}{3}}{\frac{3}{2}\left(-\frac{1}{6}\right)-\frac{1}{3}\times \frac{1}{4}}\\-\frac{\frac{1}{4}}{\frac{3}{2}\left(-\frac{1}{6}\right)-\frac{1}{3}\times \frac{1}{4}}&\frac{\frac{3}{2}}{\frac{3}{2}\left(-\frac{1}{6}\right)-\frac{1}{3}\times \frac{1}{4}}\end{matrix}\right)\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&1\\\frac{3}{4}&-\frac{9}{2}\end{matrix}\right)\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1-3}{2}\\\frac{3}{4}-\frac{9}{2}\left(-\frac{3}{2}\right)\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\\frac{15}{2}\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-1,y=\frac{15}{2}
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
\frac{3}{2}x+\frac{1}{3}y=1,\frac{1}{4}x-\frac{1}{6}y=-\frac{3}{2}
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
\frac{1}{4}\times \frac{3}{2}x+\frac{1}{4}\times \frac{1}{3}y=\frac{1}{4},\frac{3}{2}\times \frac{1}{4}x+\frac{3}{2}\left(-\frac{1}{6}\right)y=\frac{3}{2}\left(-\frac{3}{2}\right)
\frac{3x}{2}, \frac{x}{4} എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും \frac{1}{4} കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും \frac{3}{2} കൊണ്ടും ഗുണിക്കുക.
\frac{3}{8}x+\frac{1}{12}y=\frac{1}{4},\frac{3}{8}x-\frac{1}{4}y=-\frac{9}{4}
ലഘൂകരിക്കുക.
\frac{3}{8}x-\frac{3}{8}x+\frac{1}{12}y+\frac{1}{4}y=\frac{1+9}{4}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് \frac{3}{8}x+\frac{1}{12}y=\frac{1}{4} എന്നതിൽ നിന്ന് \frac{3}{8}x-\frac{1}{4}y=-\frac{9}{4} കുറയ്ക്കുക.
\frac{1}{12}y+\frac{1}{4}y=\frac{1+9}{4}
\frac{3x}{8}, -\frac{3x}{8} എന്നതിൽ ചേർക്കുക. \frac{3x}{8}, -\frac{3x}{8} എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
\frac{1}{3}y=\frac{1+9}{4}
\frac{y}{12}, \frac{y}{4} എന്നതിൽ ചേർക്കുക.
\frac{1}{3}y=\frac{5}{2}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{4} എന്നത് \frac{9}{4} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
y=\frac{15}{2}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഗുണിക്കുക.
\frac{1}{4}x-\frac{1}{6}\times \frac{15}{2}=-\frac{3}{2}
\frac{1}{4}x-\frac{1}{6}y=-\frac{3}{2} എന്നതിലെ y എന്നതിനായി \frac{15}{2} സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
\frac{1}{4}x-\frac{5}{4}=-\frac{3}{2}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{1}{6}, \frac{15}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\frac{1}{4}x=-\frac{1}{4}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{5}{4} ചേർക്കുക.
x=-1
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഗുണിക്കുക.
x=-1,y=\frac{15}{2}
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.