പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x-2y=9,3x+4y=7
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x-2y=9
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
x=2y+9
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 2y ചേർക്കുക.
3\left(2y+9\right)+4y=7
3x+4y=7 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി 2y+9 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
6y+27+4y=7
3, 2y+9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
10y+27=7
6y, 4y എന്നതിൽ ചേർക്കുക.
10y=-20
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 27 കുറയ്ക്കുക.
y=-2
ഇരുവശങ്ങളെയും 10 കൊണ്ട് ഹരിക്കുക.
x=2\left(-2\right)+9
x=2y+9 എന്നതിലെ y എന്നതിനായി -2 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-4+9
2, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=5
9, -4 എന്നതിൽ ചേർക്കുക.
x=5,y=-2
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
x-2y=9,3x+4y=7
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}1&-2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\7\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}1&-2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
\left(\begin{matrix}1&-2\\3&4\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-2\times 3\right)}&-\frac{-2}{4-\left(-2\times 3\right)}\\-\frac{3}{4-\left(-2\times 3\right)}&\frac{1}{4-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}9\\7\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\-\frac{3}{10}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}9\\7\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 9+\frac{1}{5}\times 7\\-\frac{3}{10}\times 9+\frac{1}{10}\times 7\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=5,y=-2
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
x-2y=9,3x+4y=7
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
3x+3\left(-2\right)y=3\times 9,3x+4y=7
x, 3x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 1 കൊണ്ടും ഗുണിക്കുക.
3x-6y=27,3x+4y=7
ലഘൂകരിക്കുക.
3x-3x-6y-4y=27-7
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 3x-6y=27 എന്നതിൽ നിന്ന് 3x+4y=7 കുറയ്ക്കുക.
-6y-4y=27-7
3x, -3x എന്നതിൽ ചേർക്കുക. 3x, -3x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
-10y=27-7
-6y, -4y എന്നതിൽ ചേർക്കുക.
-10y=20
27, -7 എന്നതിൽ ചേർക്കുക.
y=-2
ഇരുവശങ്ങളെയും -10 കൊണ്ട് ഹരിക്കുക.
3x+4\left(-2\right)=7
3x+4y=7 എന്നതിലെ y എന്നതിനായി -2 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
3x-8=7
4, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
3x=15
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 8 ചേർക്കുക.
x=5
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x=5,y=-2
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.