പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

പങ്കിടുക

\int 5x+8585+68e^{15}\mathrm{d}x
ആദ്യം ഇൻഡിഫിനിറ്റ് സംഖ്യയെ മൂല്യനിർണ്ണയം ചെയ്യുക.
\int 5x\mathrm{d}x+\int 8585\mathrm{d}x+\int 68e^{15}\mathrm{d}x
ആകെ തുകയെ പദം അനുസരിച്ച് സംയോജിപ്പിക്കുക.
5\int x\mathrm{d}x+\int 8585\mathrm{d}x+68\int e^{15}\mathrm{d}x
ഓരോ പദത്തിലെയും കോൺസ്റ്റൻ്റ് ഘടക ലഘൂകരണം ചെയ്യുക.
\frac{5x^{2}}{2}+\int 8585\mathrm{d}x+68\int e^{15}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x\mathrm{d}x-നെ \frac{x^{2}}{2} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക 5, \frac{x^{2}}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{5x^{2}}{2}+8585x+68\int e^{15}\mathrm{d}x
പൊതു പൂർണ്ണസംഖ്യാ പട്ടികകളുടെ നിയമം \int a\mathrm{d}x=ax ഉപയോഗിച്ച് 8585-ൻ്റെ പൂർണ്ണസംഘ്യ കണ്ടെത്തുക.
\frac{5x^{2}}{2}+8585x+68e^{15}x
പൊതു പൂർണ്ണസംഖ്യാ പട്ടികകളുടെ നിയമം \int a\mathrm{d}x=ax ഉപയോഗിച്ച് e^{15}-ൻ്റെ പൂർണ്ണസംഘ്യ കണ്ടെത്തുക.
\frac{5}{2}\times 45^{2}+8585\times 45+68e^{15}\times 45-\left(\frac{5}{2}\left(-9\right)^{2}+8585\left(-9\right)+68e^{15}\left(-9\right)\right)
സമാകലനത്തിന്‍റെ ഉയർന്ന പരിധിയിൽ മൂല്യനിർണ്ണയം ചെയ്ത എക്‌സ്‌പ്രഷൻ്റെ ആന്‍റിഡെറിവേറ്റീവിൽ നിന്ന് സമാകലനത്തിന്‍റെ താഴ്ന്ന പരിധിയിൽ മൂല്യനിർണ്ണയം ചെയ്ത ആന്‍റിഡെറിവേറ്റീവ് കുറച്ച് കിട്ടുന്നതാണ് നിശ്ചിത സമാകലനം.
468450+3672e^{15}
ലഘൂകരിക്കുക.