പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image

പങ്കിടുക

e\int \sqrt{x}\mathrm{d}x
\int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x ഉപയോഗിച്ച് കോൺസ്റ്റൻ്റിനെ ഘടക ലഘൂകരണം ചെയ്യുക.
e\times \frac{2x^{\frac{3}{2}}}{3}
\sqrt{x} എന്നത് x^{\frac{1}{2}} എന്നായി തിരുത്തിയെഴുതുക. \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{\frac{1}{2}}\mathrm{d}x-നെ \frac{x^{\frac{3}{2}}}{\frac{3}{2}} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക ലഘൂകരിക്കുക.
\frac{2ex^{\frac{3}{2}}}{3}
ലഘൂകരിക്കുക.
\frac{2ex^{\frac{3}{2}}}{3}+С
f\left(x\right)-ൻ്റെ ആൻ്റിഡെറിവേറ്റീവ് F\left(x\right) ആണെങ്കിൽ, f\left(x\right)-ൻ്റെ എല്ലാ ആൻ്റിഡെറിവേറ്റീവുകളുടെയും ഗണങ്ങൾ നൽകുന്നത് F\left(x\right)+C ആയിരിക്കും. അതുകൊണ്ട് ഫലത്തിലേക്ക് ഏകീകരണത്തിൻ്റെ കോൺസ്റ്റൻ്റ് C\in \mathrm{R} ചേർക്കുക.