മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{2t^{2}x^{6}}{3}+С
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
4t^{2}x^{5}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\int x\times 2^{2}t^{2}\left(x^{2}\right)^{2}\mathrm{d}x
\left(2tx^{2}\right)^{2} വികസിപ്പിക്കുക.
\int x\times 2^{2}t^{2}x^{4}\mathrm{d}x
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
\int x\times 4t^{2}x^{4}\mathrm{d}x
2-ന്റെ പവറിലേക്ക് 2 കണക്കാക്കി 4 നേടുക.
\int x^{5}\times 4t^{2}\mathrm{d}x
ഒരേ ബേസിന്റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്റുകൾ ചേർക്കുക. 5 ലഭ്യമാക്കാൻ 1, 4 എന്നിവ ചേർക്കുക.
4t^{2}\int x^{5}\mathrm{d}x
\int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x ഉപയോഗിച്ച് കോൺസ്റ്റൻ്റിനെ ഘടക ലഘൂകരണം ചെയ്യുക.
4t^{2}\times \frac{x^{6}}{6}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{5}\mathrm{d}x-നെ \frac{x^{6}}{6} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക
\frac{2t^{2}x^{6}}{3}
ലഘൂകരിക്കുക.
\frac{2t^{2}x^{6}}{3}+С
f\left(x\right)-ൻ്റെ ആൻ്റിഡെറിവേറ്റീവ് F\left(x\right) ആണെങ്കിൽ, f\left(x\right)-ൻ്റെ എല്ലാ ആൻ്റിഡെറിവേറ്റീവുകളുടെയും ഗണങ്ങൾ നൽകുന്നത് F\left(x\right)+C ആയിരിക്കും. അതുകൊണ്ട് ഫലത്തിലേക്ക് ഏകീകരണത്തിൻ്റെ കോൺസ്റ്റൻ്റ് C\in \mathrm{R} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}