പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\int x^{2}\left(x^{3}+3x^{2}+3x+1\right)\mathrm{d}x
\left(x+1\right)^{3} വികസിപ്പിക്കാൻ \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
\int x^{5}+3x^{4}+3x^{3}+x^{2}\mathrm{d}x
x^{3}+3x^{2}+3x+1 കൊണ്ട് x^{2} ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\int x^{5}\mathrm{d}x+\int 3x^{4}\mathrm{d}x+\int 3x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
ആകെ തുകയെ പദം അനുസരിച്ച് സംയോജിപ്പിക്കുക.
\int x^{5}\mathrm{d}x+3\int x^{4}\mathrm{d}x+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
ഓരോ പദത്തിലെയും കോൺസ്റ്റൻ്റ് ഘടക ലഘൂകരണം ചെയ്യുക.
\frac{x^{6}}{6}+3\int x^{4}\mathrm{d}x+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{5}\mathrm{d}x-നെ \frac{x^{6}}{6} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{4}\mathrm{d}x-നെ \frac{x^{5}}{5} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക 3, \frac{x^{5}}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+\frac{3x^{4}}{4}+\int x^{2}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{3}\mathrm{d}x-നെ \frac{x^{4}}{4} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക 3, \frac{x^{4}}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+\frac{3x^{4}}{4}+\frac{x^{3}}{3}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{2}\mathrm{d}x-നെ \frac{x^{3}}{3} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക
\frac{x^{3}}{3}+\frac{3x^{4}}{4}+\frac{3x^{5}}{5}+\frac{x^{6}}{6}
ലഘൂകരിക്കുക.
\frac{x^{3}}{3}+\frac{3x^{4}}{4}+\frac{3x^{5}}{5}+\frac{x^{6}}{6}+С
f\left(x\right)-ൻ്റെ ആൻ്റിഡെറിവേറ്റീവ് F\left(x\right) ആണെങ്കിൽ, f\left(x\right)-ൻ്റെ എല്ലാ ആൻ്റിഡെറിവേറ്റീവുകളുടെയും ഗണങ്ങൾ നൽകുന്നത് F\left(x\right)+C ആയിരിക്കും. അതുകൊണ്ട് ഫലത്തിലേക്ക് ഏകീകരണത്തിൻ്റെ കോൺസ്റ്റൻ്റ് C\in \mathrm{R} ചേർക്കുക.