പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\int _{1}^{2}\left(\left(x^{3}\right)^{2}+10x^{3}+25\right)\times 3x^{2}\mathrm{d}x
\left(x^{3}+5\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
\int _{1}^{2}\left(x^{6}+10x^{3}+25\right)\times 3x^{2}\mathrm{d}x
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്‍റുകൾ ഗുണിക്കുക. 6 നേടാൻ 3, 2 എന്നിവ ഗുണിക്കുക.
\int _{1}^{2}\left(3x^{6}+30x^{3}+75\right)x^{2}\mathrm{d}x
3 കൊണ്ട് x^{6}+10x^{3}+25 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\int _{1}^{2}3x^{8}+30x^{5}+75x^{2}\mathrm{d}x
x^{2} കൊണ്ട് 3x^{6}+30x^{3}+75 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\int 3x^{8}+30x^{5}+75x^{2}\mathrm{d}x
ആദ്യം ഇൻഡിഫിനിറ്റ് സംഖ്യയെ മൂല്യനിർണ്ണയം ചെയ്യുക.
\int 3x^{8}\mathrm{d}x+\int 30x^{5}\mathrm{d}x+\int 75x^{2}\mathrm{d}x
ആകെ തുകയെ പദം അനുസരിച്ച് സംയോജിപ്പിക്കുക.
3\int x^{8}\mathrm{d}x+30\int x^{5}\mathrm{d}x+75\int x^{2}\mathrm{d}x
ഓരോ പദത്തിലെയും കോൺസ്റ്റൻ്റ് ഘടക ലഘൂകരണം ചെയ്യുക.
\frac{x^{9}}{3}+30\int x^{5}\mathrm{d}x+75\int x^{2}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{8}\mathrm{d}x-നെ \frac{x^{9}}{9} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക 3, \frac{x^{9}}{9} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x^{9}}{3}+5x^{6}+75\int x^{2}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{5}\mathrm{d}x-നെ \frac{x^{6}}{6} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക 30, \frac{x^{6}}{6} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x^{9}}{3}+5x^{6}+25x^{3}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{2}\mathrm{d}x-നെ \frac{x^{3}}{3} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക 75, \frac{x^{3}}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
25\times 2^{3}+5\times 2^{6}+\frac{2^{9}}{3}-\left(25\times 1^{3}+5\times 1^{6}+\frac{1^{9}}{3}\right)
സമാകലനത്തിന്‍റെ ഉയർന്ന പരിധിയിൽ മൂല്യനിർണ്ണയം ചെയ്ത എക്‌സ്‌പ്രഷൻ്റെ ആന്‍റിഡെറിവേറ്റീവിൽ നിന്ന് സമാകലനത്തിന്‍റെ താഴ്ന്ന പരിധിയിൽ മൂല്യനിർണ്ണയം ചെയ്ത ആന്‍റിഡെറിവേറ്റീവ് കുറച്ച് കിട്ടുന്നതാണ് നിശ്ചിത സമാകലനം.
\frac{1981}{3}
ലഘൂകരിക്കുക.