മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{7}{3}\approx 2.333333333
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\int 5u^{5}+3u^{2}+u\mathrm{d}u
ആദ്യം ഇൻഡിഫിനിറ്റ് സംഖ്യയെ മൂല്യനിർണ്ണയം ചെയ്യുക.
\int 5u^{5}\mathrm{d}u+\int 3u^{2}\mathrm{d}u+\int u\mathrm{d}u
ആകെ തുകയെ പദം അനുസരിച്ച് സംയോജിപ്പിക്കുക.
5\int u^{5}\mathrm{d}u+3\int u^{2}\mathrm{d}u+\int u\mathrm{d}u
ഓരോ പദത്തിലെയും കോൺസ്റ്റൻ്റ് ഘടക ലഘൂകരണം ചെയ്യുക.
\frac{5u^{6}}{6}+3\int u^{2}\mathrm{d}u+\int u\mathrm{d}u
\int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int u^{5}\mathrm{d}u-നെ \frac{u^{6}}{6} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക 5, \frac{u^{6}}{6} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{5u^{6}}{6}+u^{3}+\int u\mathrm{d}u
\int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int u^{2}\mathrm{d}u-നെ \frac{u^{3}}{3} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക 3, \frac{u^{3}}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{5u^{6}}{6}+u^{3}+\frac{u^{2}}{2}
\int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int u\mathrm{d}u-നെ \frac{u^{2}}{2} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക
\frac{5}{6}\times 1^{6}+1^{3}+\frac{1^{2}}{2}-\left(\frac{5}{6}\times 0^{6}+0^{3}+\frac{0^{2}}{2}\right)
സമാകലനത്തിന്റെ ഉയർന്ന പരിധിയിൽ മൂല്യനിർണ്ണയം ചെയ്ത എക്സ്പ്രഷൻ്റെ ആന്റിഡെറിവേറ്റീവിൽ നിന്ന് സമാകലനത്തിന്റെ താഴ്ന്ന പരിധിയിൽ മൂല്യനിർണ്ണയം ചെയ്ത ആന്റിഡെറിവേറ്റീവ് കുറച്ച് കിട്ടുന്നതാണ് നിശ്ചിത സമാകലനം.
\frac{7}{3}
ലഘൂകരിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}