പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\int \frac{x^{2}}{2}-x^{4}\mathrm{d}x
ആദ്യം ഇൻഡിഫിനിറ്റ് സംഖ്യയെ മൂല്യനിർണ്ണയം ചെയ്യുക.
\int \frac{x^{2}}{2}\mathrm{d}x+\int -x^{4}\mathrm{d}x
ആകെ തുകയെ പദം അനുസരിച്ച് സംയോജിപ്പിക്കുക.
\frac{\int x^{2}\mathrm{d}x}{2}-\int x^{4}\mathrm{d}x
ഓരോ പദത്തിലെയും കോൺസ്റ്റൻ്റ് ഘടക ലഘൂകരണം ചെയ്യുക.
\frac{x^{3}}{6}-\int x^{4}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{2}\mathrm{d}x-നെ \frac{x^{3}}{3} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക \frac{1}{2}, \frac{x^{3}}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x^{3}}{6}-\frac{x^{5}}{5}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{4}\mathrm{d}x-നെ \frac{x^{5}}{5} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക -1, \frac{x^{5}}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{1}{6}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{3}-\frac{1}{5}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{5}-\left(\frac{0^{3}}{6}-\frac{0^{5}}{5}\right)
സമാകലനത്തിന്‍റെ ഉയർന്ന പരിധിയിൽ മൂല്യനിർണ്ണയം ചെയ്ത എക്‌സ്‌പ്രഷൻ്റെ ആന്‍റിഡെറിവേറ്റീവിൽ നിന്ന് സമാകലനത്തിന്‍റെ താഴ്ന്ന പരിധിയിൽ മൂല്യനിർണ്ണയം ചെയ്ത ആന്‍റിഡെറിവേറ്റീവ് കുറച്ച് കിട്ടുന്നതാണ് നിശ്ചിത സമാകലനം.
\frac{\sqrt{2}}{60}
ലഘൂകരിക്കുക.