മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{2x^{6}}{3}-\frac{3x^{4}}{4}+\frac{7x^{3}}{3}+С
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
x^{2}\left(4x^{3}-3x+7\right)
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\int 7x^{2}\mathrm{d}x+\int -3x^{3}\mathrm{d}x+\int 4x^{5}\mathrm{d}x
ആകെ തുകയെ പദം അനുസരിച്ച് സംയോജിപ്പിക്കുക.
7\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x+4\int x^{5}\mathrm{d}x
ഓരോ പദത്തിലെയും കോൺസ്റ്റൻ്റ് ഘടക ലഘൂകരണം ചെയ്യുക.
\frac{7x^{3}}{3}-3\int x^{3}\mathrm{d}x+4\int x^{5}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{2}\mathrm{d}x-നെ \frac{x^{3}}{3} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക 7, \frac{x^{3}}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{7x^{3}}{3}-\frac{3x^{4}}{4}+4\int x^{5}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{3}\mathrm{d}x-നെ \frac{x^{4}}{4} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക -3, \frac{x^{4}}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{7x^{3}}{3}-\frac{3x^{4}}{4}+\frac{2x^{6}}{3}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{5}\mathrm{d}x-നെ \frac{x^{6}}{6} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക 4, \frac{x^{6}}{6} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{7x^{3}}{3}-\frac{3x^{4}}{4}+\frac{2x^{6}}{3}+С
f\left(x\right)-ൻ്റെ ആൻ്റിഡെറിവേറ്റീവ് F\left(x\right) ആണെങ്കിൽ, f\left(x\right)-ൻ്റെ എല്ലാ ആൻ്റിഡെറിവേറ്റീവുകളുടെയും ഗണങ്ങൾ നൽകുന്നത് F\left(x\right)+C ആയിരിക്കും. അതുകൊണ്ട് ഫലത്തിലേക്ക് ഏകീകരണത്തിൻ്റെ കോൺസ്റ്റൻ്റ് C\in \mathrm{R} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}