മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{6x^{\frac{5}{2}}}{5}+\frac{3x^{\frac{7}{3}}}{7}+\frac{2x^{\frac{3}{2}}}{3}+С
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
\sqrt{x}\left(3x+x^{\frac{5}{6}}+1\right)
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\int \sqrt{x}\mathrm{d}x+\int x^{\frac{4}{3}}\mathrm{d}x+\int 3x^{\frac{3}{2}}\mathrm{d}x
ആകെ തുകയെ പദം അനുസരിച്ച് സംയോജിപ്പിക്കുക.
\int \sqrt{x}\mathrm{d}x+\int x^{\frac{4}{3}}\mathrm{d}x+3\int x^{\frac{3}{2}}\mathrm{d}x
ഓരോ പദത്തിലെയും കോൺസ്റ്റൻ്റ് ഘടക ലഘൂകരണം ചെയ്യുക.
\frac{2x^{\frac{3}{2}}}{3}+\int x^{\frac{4}{3}}\mathrm{d}x+3\int x^{\frac{3}{2}}\mathrm{d}x
\sqrt{x} എന്നത് x^{\frac{1}{2}} എന്നായി തിരുത്തിയെഴുതുക. \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{\frac{1}{2}}\mathrm{d}x-നെ \frac{x^{\frac{3}{2}}}{\frac{3}{2}} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക ലഘൂകരിക്കുക.
\frac{2x^{\frac{3}{2}}}{3}+\frac{3x^{\frac{7}{3}}}{7}+3\int x^{\frac{3}{2}}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{\frac{4}{3}}\mathrm{d}x-നെ \frac{3x^{\frac{7}{3}}}{7} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക
\frac{2x^{\frac{3}{2}}}{3}+\frac{3x^{\frac{7}{3}}}{7}+\frac{6x^{\frac{5}{2}}}{5}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1-നായതിനാൽ, \int x^{\frac{3}{2}}\mathrm{d}x-നെ \frac{2x^{\frac{5}{2}}}{5} ഉപയോഗിച്ച് മാറ്റി സ്ഥാപിക്കുക 3, \frac{2x^{\frac{5}{2}}}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{2x^{\frac{3}{2}}}{3}+\frac{3x^{\frac{7}{3}}}{7}+\frac{6x^{\frac{5}{2}}}{5}+С
f\left(x\right)-ൻ്റെ ആൻ്റിഡെറിവേറ്റീവ് F\left(x\right) ആണെങ്കിൽ, f\left(x\right)-ൻ്റെ എല്ലാ ആൻ്റിഡെറിവേറ്റീവുകളുടെയും ഗണങ്ങൾ നൽകുന്നത് F\left(x\right)+C ആയിരിക്കും. അതുകൊണ്ട് ഫലത്തിലേക്ക് ഏകീകരണത്തിൻ്റെ കോൺസ്റ്റൻ്റ് C\in \mathrm{R} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}