പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{2}-xy})
x-y കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-\left(x^{2}+\left(-y\right)x^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+\left(-y\right)x^{1})
f\left(u\right), u=g\left(x\right) എന്നീ രണ്ട് ഡിഫറൻഷ്യബിൾ ഫംഗ്‌ഷനുകളുടെ കമ്പോസിഷൻ F ആണെങ്കിൽ, അതായത് F\left(x\right)=f\left(g\left(x\right)\right) ആണെങ്കിൽ, തുടർന്ന് F എന്നതിന്‍റെ ഡെറിവേറ്റീവ് എന്നത് x എന്നതുമായി ബന്ധപ്പെട്ട് g എന്നതിന്‍റെ ഡെറിവേറ്റീവിനെ ഗുണിക്കുന്ന u എന്നതുമായി ബന്ധപ്പെട്ട f എന്നതിന്‍റെ ഡെറിവേറ്റീവ് ആയിരിക്കും, അതായത് \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{2}+\left(-y\right)x^{1}\right)^{-2}\left(2x^{2-1}+\left(-y\right)x^{1-1}\right)
ഒരു പോളിനോമിലിന്‍റെ അനുമാനം അതിന്‍റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്‍റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്‍റെ അനുമാനം nax^{n-1} ആണ്.
\left(x^{2}+\left(-y\right)x^{1}\right)^{-2}\left(-2x^{1}+yx^{0}\right)
ലഘൂകരിക്കുക.
\left(x^{2}+\left(-y\right)x\right)^{-2}\left(-2x+yx^{0}\right)
ഏതു പദത്തിനും t, t^{1}=t.
\left(x^{2}+\left(-y\right)x\right)^{-2}\left(-2x+y\times 1\right)
0, t^{0}=1 ഒഴികെ ഏതു പദത്തിനും t.
\left(x^{2}+\left(-y\right)x\right)^{-2}\left(-2x+y\right)
ഏതു പദത്തിനും t, t\times 1=t, 1t=t.