y എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
\left\{\begin{matrix}y=-\frac{2x\left(x-2\right)}{z}\text{, }&z\neq 0\text{ and }x\neq z\text{ and }x\neq -z\\y\in \mathrm{C}\text{, }&z=0\text{ and }x\neq 0\end{matrix}\right.
y എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}y=-\frac{2x\left(x-2\right)}{z}\text{, }&z\neq 0\text{ and }|x|\neq |z|\\y\in \mathrm{R}\text{, }&z=0\text{ and }x\neq 0\end{matrix}\right.
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
\left\{\begin{matrix}x=\frac{\sqrt{4-2yz}}{2}+1\text{, }&\left(z\neq -\frac{y}{2}+2\text{ and }z\neq -\frac{y}{2}-2\right)\text{ or }\left(z\neq -\frac{y}{2}+2\text{ and }y\neq -2\text{ and }arg(-\frac{y}{2}-1)<\pi \right)\text{ or }\left(arg(2-y)\geq \pi \text{ and }y\neq 2\text{ and }z\neq -\frac{y}{2}-2\right)\text{ or }\left(arg(2-y)\geq \pi \text{ and }y\neq 2\text{ and }arg(-\frac{y}{2}-1)<\pi \right)\\x=-\frac{\sqrt{4-2yz}}{2}+1\text{, }&\left(z\neq 0\text{ and }z\neq -\frac{y}{2}+2\text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }z\neq -\frac{y}{2}+2\text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }z\neq -\frac{y}{2}+2\text{ and }z\neq -\frac{y}{2}-2\text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }z\neq -\frac{y}{2}+2\text{ and }z\neq -\frac{y}{2}-2\text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }z\neq 1\text{ and }arg(y-2)\geq \pi \text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }z\neq 1\text{ and }arg(y-2)\geq \pi \text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }z\neq 1\text{ and }arg(y-2)\geq \pi \text{ and }z\neq -\frac{y}{2}-2\text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }z\neq 1\text{ and }arg(y-2)\geq \pi \text{ and }z\neq -\frac{y}{2}-2\text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }y\neq 2\text{ and }arg(y-2)\geq \pi \text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }y\neq 2\text{ and }arg(y-2)\geq \pi \text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }y\neq 2\text{ and }arg(y-2)\geq \pi \text{ and }z\neq -\frac{y}{2}-2\text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }y\neq 2\text{ and }arg(y-2)\geq \pi \text{ and }z\neq -\frac{y}{2}-2\text{ and }y\neq -2\right)\\x\neq 0\text{, }&z=0\end{matrix}\right.
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(-x-z\right)\left(x+z\right)-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
x-z,x+z,x^{2}-z^{2} എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-z\right)\left(-x-z\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
-x^{2}-2xz-z^{2}-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
x+z കൊണ്ട് -x-z ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-x^{2}-2xz-z^{2}-\left(-x^{2}+2xz-z^{2}\right)=-z\left(2x^{2}+zy\right)
x-z കൊണ്ട് -x+z ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-x^{2}-2xz-z^{2}+x^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
-x^{2}+2xz-z^{2} എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
-2xz-z^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
0 നേടാൻ -x^{2}, x^{2} എന്നിവ യോജിപ്പിക്കുക.
-4xz-z^{2}+z^{2}=-z\left(2x^{2}+zy\right)
-4xz നേടാൻ -2xz, -2xz എന്നിവ യോജിപ്പിക്കുക.
-4xz=-z\left(2x^{2}+zy\right)
0 നേടാൻ -z^{2}, z^{2} എന്നിവ യോജിപ്പിക്കുക.
-4xz=-2zx^{2}-yz^{2}
2x^{2}+zy കൊണ്ട് -z ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-2zx^{2}-yz^{2}=-4xz
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
-yz^{2}=-4xz+2zx^{2}
2zx^{2} ഇരു വശങ്ങളിലും ചേർക്കുക.
\left(-z^{2}\right)y=2zx^{2}-4xz
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{\left(-z^{2}\right)y}{-z^{2}}=\frac{2xz\left(x-2\right)}{-z^{2}}
ഇരുവശങ്ങളെയും -z^{2} കൊണ്ട് ഹരിക്കുക.
y=\frac{2xz\left(x-2\right)}{-z^{2}}
-z^{2} കൊണ്ട് ഹരിക്കുന്നത്, -z^{2} കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
y=-\frac{2x\left(x-2\right)}{z}
-z^{2} കൊണ്ട് 2xz\left(-2+x\right) എന്നതിനെ ഹരിക്കുക.
\left(-x-z\right)\left(x+z\right)-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
x-z,x+z,x^{2}-z^{2} എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-z\right)\left(-x-z\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
-x^{2}-2xz-z^{2}-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
x+z കൊണ്ട് -x-z ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-x^{2}-2xz-z^{2}-\left(-x^{2}+2xz-z^{2}\right)=-z\left(2x^{2}+zy\right)
x-z കൊണ്ട് -x+z ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-x^{2}-2xz-z^{2}+x^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
-x^{2}+2xz-z^{2} എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
-2xz-z^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
0 നേടാൻ -x^{2}, x^{2} എന്നിവ യോജിപ്പിക്കുക.
-4xz-z^{2}+z^{2}=-z\left(2x^{2}+zy\right)
-4xz നേടാൻ -2xz, -2xz എന്നിവ യോജിപ്പിക്കുക.
-4xz=-z\left(2x^{2}+zy\right)
0 നേടാൻ -z^{2}, z^{2} എന്നിവ യോജിപ്പിക്കുക.
-4xz=-2zx^{2}-yz^{2}
2x^{2}+zy കൊണ്ട് -z ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-2zx^{2}-yz^{2}=-4xz
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
-yz^{2}=-4xz+2zx^{2}
2zx^{2} ഇരു വശങ്ങളിലും ചേർക്കുക.
\left(-z^{2}\right)y=2zx^{2}-4xz
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{\left(-z^{2}\right)y}{-z^{2}}=\frac{2xz\left(x-2\right)}{-z^{2}}
ഇരുവശങ്ങളെയും -z^{2} കൊണ്ട് ഹരിക്കുക.
y=\frac{2xz\left(x-2\right)}{-z^{2}}
-z^{2} കൊണ്ട് ഹരിക്കുന്നത്, -z^{2} കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
y=-\frac{2x\left(x-2\right)}{z}
-z^{2} കൊണ്ട് 2xz\left(-2+x\right) എന്നതിനെ ഹരിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}