a എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
\left\{\begin{matrix}a=-\frac{v-ux-x^{2}}{t}\text{, }&t\neq 0\text{ and }x\neq -u\\a\in \mathrm{C}\text{, }&v=x\left(x+u\right)\text{ and }t=0\text{ and }x\neq -u\end{matrix}\right.
t എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
\left\{\begin{matrix}t=-\frac{v-ux-x^{2}}{a}\text{, }&a\neq 0\text{ and }x\neq -u\\t\in \mathrm{C}\text{, }&v=x\left(x+u\right)\text{ and }a=0\text{ and }x\neq -u\end{matrix}\right.
a എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}a=-\frac{v-ux-x^{2}}{t}\text{, }&t\neq 0\text{ and }x\neq -u\\a\in \mathrm{R}\text{, }&v=x\left(x+u\right)\text{ and }t=0\text{ and }x\neq -u\end{matrix}\right.
t എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}t=-\frac{v-ux-x^{2}}{a}\text{, }&a\neq 0\text{ and }x\neq -u\\t\in \mathrm{R}\text{, }&v=x\left(x+u\right)\text{ and }a=0\text{ and }x\neq -u\end{matrix}\right.
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
v+at=x\left(x+u\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും x+u കൊണ്ട് ഗുണിക്കുക.
v+at=x^{2}+xu
x+u കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
at=x^{2}+xu-v
ഇരുവശങ്ങളിൽ നിന്നും v കുറയ്ക്കുക.
ta=x^{2}+ux-v
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{ta}{t}=\frac{x^{2}+ux-v}{t}
ഇരുവശങ്ങളെയും t കൊണ്ട് ഹരിക്കുക.
a=\frac{x^{2}+ux-v}{t}
t കൊണ്ട് ഹരിക്കുന്നത്, t കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
v+at=x\left(x+u\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും x+u കൊണ്ട് ഗുണിക്കുക.
v+at=x^{2}+xu
x+u കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
at=x^{2}+xu-v
ഇരുവശങ്ങളിൽ നിന്നും v കുറയ്ക്കുക.
at=x^{2}+ux-v
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{at}{a}=\frac{x^{2}+ux-v}{a}
ഇരുവശങ്ങളെയും a കൊണ്ട് ഹരിക്കുക.
t=\frac{x^{2}+ux-v}{a}
a കൊണ്ട് ഹരിക്കുന്നത്, a കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
v+at=x\left(x+u\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും x+u കൊണ്ട് ഗുണിക്കുക.
v+at=x^{2}+xu
x+u കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
at=x^{2}+xu-v
ഇരുവശങ്ങളിൽ നിന്നും v കുറയ്ക്കുക.
ta=x^{2}+ux-v
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{ta}{t}=\frac{x^{2}+ux-v}{t}
ഇരുവശങ്ങളെയും t കൊണ്ട് ഹരിക്കുക.
a=\frac{x^{2}+ux-v}{t}
t കൊണ്ട് ഹരിക്കുന്നത്, t കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
v+at=x\left(x+u\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും x+u കൊണ്ട് ഗുണിക്കുക.
v+at=x^{2}+xu
x+u കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
at=x^{2}+xu-v
ഇരുവശങ്ങളിൽ നിന്നും v കുറയ്ക്കുക.
at=x^{2}+ux-v
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{at}{a}=\frac{x^{2}+ux-v}{a}
ഇരുവശങ്ങളെയും a കൊണ്ട് ഹരിക്കുക.
t=\frac{x^{2}+ux-v}{a}
a കൊണ്ട് ഹരിക്കുന്നത്, a കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}