y എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
\left\{\begin{matrix}\\y=\frac{\sqrt{225x^{2}-420x+4}}{12}+\frac{3x}{4}+\frac{1}{6}\text{, }&\text{unconditionally}\\y=-\frac{\sqrt{225x^{2}-420x+4}}{12}+\frac{3x}{4}+\frac{1}{6}\text{, }&x\neq 0\end{matrix}\right.
x എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}\\x=\frac{\sqrt{225y^{2}-390y+361}}{12}-\frac{3y}{4}+\frac{19}{12}\text{, }&\text{unconditionally}\\x=-\frac{\sqrt{225y^{2}-390y+361}}{12}-\frac{3y}{4}+\frac{19}{12}\text{, }&y\neq 0\end{matrix}\right.
y എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}y=-\frac{\sqrt{225x^{2}-420x+4}}{12}+\frac{3x}{4}+\frac{1}{6}\text{, }&x\geq \frac{8\sqrt{3}+14}{15}\text{ or }\left(x\neq 0\text{ and }x\leq \frac{14-8\sqrt{3}}{15}\right)\\y=\frac{\sqrt{225x^{2}-420x+4}}{12}+\frac{3x}{4}+\frac{1}{6}\text{, }&x\geq \frac{8\sqrt{3}+14}{15}\text{ or }x\leq \frac{14-8\sqrt{3}}{15}\end{matrix}\right.
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}