പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{5}{4}x^{2}-\frac{1}{2}x+\frac{1}{4}=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{5}{4}\times \frac{1}{4}}}{2\times \frac{5}{4}}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി \frac{5}{4} എന്നതും b എന്നതിനായി -\frac{1}{2} എന്നതും c എന്നതിനായി \frac{1}{4} എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times \frac{5}{4}\times \frac{1}{4}}}{2\times \frac{5}{4}}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{2} സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-5\times \frac{1}{4}}}{2\times \frac{5}{4}}
-4, \frac{5}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1-5}{4}}}{2\times \frac{5}{4}}
-5, \frac{1}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{-1}}{2\times \frac{5}{4}}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{4} എന്നത് -\frac{5}{4} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{-\left(-\frac{1}{2}\right)±i}{2\times \frac{5}{4}}
-1 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{\frac{1}{2}±i}{2\times \frac{5}{4}}
-\frac{1}{2} എന്നതിന്‍റെ വിപരീതം \frac{1}{2} ആണ്.
x=\frac{\frac{1}{2}±i}{\frac{5}{2}}
2, \frac{5}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{\frac{1}{2}+i}{\frac{5}{2}}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{\frac{1}{2}±i}{\frac{5}{2}} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. \frac{1}{2}, i എന്നതിൽ ചേർക്കുക.
x=\frac{1}{5}+\frac{2}{5}i
\frac{5}{2} എന്നതിന്‍റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് \frac{1}{2}+i ഗുണിക്കുന്നതിലൂടെ \frac{5}{2} കൊണ്ട് \frac{1}{2}+i എന്നതിനെ ഹരിക്കുക.
x=\frac{\frac{1}{2}-i}{\frac{5}{2}}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{\frac{1}{2}±i}{\frac{5}{2}} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. \frac{1}{2} എന്നതിൽ നിന്ന് i വ്യവകലനം ചെയ്യുക.
x=\frac{1}{5}-\frac{2}{5}i
\frac{5}{2} എന്നതിന്‍റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് \frac{1}{2}-i ഗുണിക്കുന്നതിലൂടെ \frac{5}{2} കൊണ്ട് \frac{1}{2}-i എന്നതിനെ ഹരിക്കുക.
x=\frac{1}{5}+\frac{2}{5}i x=\frac{1}{5}-\frac{2}{5}i
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
\frac{5}{4}x^{2}-\frac{1}{2}x+\frac{1}{4}=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{5}{4}x^{2}-\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}=-\frac{1}{4}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{4} കുറയ്ക്കുക.
\frac{5}{4}x^{2}-\frac{1}{2}x=-\frac{1}{4}
അതിൽ നിന്നുതന്നെ \frac{1}{4} കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{\frac{5}{4}x^{2}-\frac{1}{2}x}{\frac{5}{4}}=-\frac{\frac{1}{4}}{\frac{5}{4}}
\frac{5}{4} കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്‍റെ പരസ്പരപൂരകത്തിന്‍റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
x^{2}+\left(-\frac{\frac{1}{2}}{\frac{5}{4}}\right)x=-\frac{\frac{1}{4}}{\frac{5}{4}}
\frac{5}{4} കൊണ്ട് ഹരിക്കുന്നത്, \frac{5}{4} കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{2}{5}x=-\frac{\frac{1}{4}}{\frac{5}{4}}
\frac{5}{4} എന്നതിന്‍റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് -\frac{1}{2} ഗുണിക്കുന്നതിലൂടെ \frac{5}{4} കൊണ്ട് -\frac{1}{2} എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{2}{5}x=-\frac{1}{5}
\frac{5}{4} എന്നതിന്‍റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് -\frac{1}{4} ഗുണിക്കുന്നതിലൂടെ \frac{5}{4} കൊണ്ട് -\frac{1}{4} എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=-\frac{1}{5}+\left(-\frac{1}{5}\right)^{2}
-\frac{1}{5} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{2}{5}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{1}{5} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-\frac{1}{5}+\frac{1}{25}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{5} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-\frac{4}{25}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{1}{5} എന്നത് \frac{1}{25} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{1}{5}\right)^{2}=-\frac{4}{25}
x^{2}-\frac{2}{5}x+\frac{1}{25} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{-\frac{4}{25}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{5}=\frac{2}{5}i x-\frac{1}{5}=-\frac{2}{5}i
ലഘൂകരിക്കുക.
x=\frac{1}{5}+\frac{2}{5}i x=\frac{1}{5}-\frac{2}{5}i
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1}{5} ചേർക്കുക.