x എന്നതിനായി സോൾവ് ചെയ്യുക
x = \frac{167}{4} = 41\frac{3}{4} = 41.75
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(45-x\right)\left(30-37\right)=\left(x-40\right)\left(37-50\right)
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 40,45 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. 40-x,x-45 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-45\right)\left(x-40\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
\left(45-x\right)\left(-7\right)=\left(x-40\right)\left(37-50\right)
-7 നേടാൻ 30 എന്നതിൽ നിന്ന് 37 കുറയ്ക്കുക.
-315+7x=\left(x-40\right)\left(37-50\right)
-7 കൊണ്ട് 45-x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-315+7x=\left(x-40\right)\left(-13\right)
-13 നേടാൻ 37 എന്നതിൽ നിന്ന് 50 കുറയ്ക്കുക.
-315+7x=-13x+520
-13 കൊണ്ട് x-40 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-315+7x+13x=520
13x ഇരു വശങ്ങളിലും ചേർക്കുക.
-315+20x=520
20x നേടാൻ 7x, 13x എന്നിവ യോജിപ്പിക്കുക.
20x=520+315
315 ഇരു വശങ്ങളിലും ചേർക്കുക.
20x=835
835 ലഭ്യമാക്കാൻ 520, 315 എന്നിവ ചേർക്കുക.
x=\frac{835}{20}
ഇരുവശങ്ങളെയും 20 കൊണ്ട് ഹരിക്കുക.
x=\frac{167}{4}
5 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{835}{20} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}