x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-\frac{1}{2}=-0.5
x=-3
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
2-2x\left(x+1\right)=5\left(x+1\right)
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -1 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും x+1 കൊണ്ട് ഗുണിക്കുക.
2-2x^{2}-2x=5\left(x+1\right)
x+1 കൊണ്ട് -2x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2-2x^{2}-2x=5x+5
x+1 കൊണ്ട് 5 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2-2x^{2}-2x-5x=5
ഇരുവശങ്ങളിൽ നിന്നും 5x കുറയ്ക്കുക.
2-2x^{2}-7x=5
-7x നേടാൻ -2x, -5x എന്നിവ യോജിപ്പിക്കുക.
2-2x^{2}-7x-5=0
ഇരുവശങ്ങളിൽ നിന്നും 5 കുറയ്ക്കുക.
-3-2x^{2}-7x=0
-3 നേടാൻ 2 എന്നതിൽ നിന്ന് 5 കുറയ്ക്കുക.
-2x^{2}-7x-3=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -2 എന്നതും b എന്നതിനായി -7 എന്നതും c എന്നതിനായി -3 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
-7 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-7\right)±\sqrt{49+8\left(-3\right)}}{2\left(-2\right)}
-4, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\left(-2\right)}
8, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-7\right)±\sqrt{25}}{2\left(-2\right)}
49, -24 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-7\right)±5}{2\left(-2\right)}
25 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{7±5}{2\left(-2\right)}
-7 എന്നതിന്റെ വിപരീതം 7 ആണ്.
x=\frac{7±5}{-4}
2, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{12}{-4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{7±5}{-4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 7, 5 എന്നതിൽ ചേർക്കുക.
x=-3
-4 കൊണ്ട് 12 എന്നതിനെ ഹരിക്കുക.
x=\frac{2}{-4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{7±5}{-4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 7 എന്നതിൽ നിന്ന് 5 വ്യവകലനം ചെയ്യുക.
x=-\frac{1}{2}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{-4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=-3 x=-\frac{1}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
2-2x\left(x+1\right)=5\left(x+1\right)
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -1 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും x+1 കൊണ്ട് ഗുണിക്കുക.
2-2x^{2}-2x=5\left(x+1\right)
x+1 കൊണ്ട് -2x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2-2x^{2}-2x=5x+5
x+1 കൊണ്ട് 5 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2-2x^{2}-2x-5x=5
ഇരുവശങ്ങളിൽ നിന്നും 5x കുറയ്ക്കുക.
2-2x^{2}-7x=5
-7x നേടാൻ -2x, -5x എന്നിവ യോജിപ്പിക്കുക.
-2x^{2}-7x=5-2
ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
-2x^{2}-7x=3
3 നേടാൻ 5 എന്നതിൽ നിന്ന് 2 കുറയ്ക്കുക.
\frac{-2x^{2}-7x}{-2}=\frac{3}{-2}
ഇരുവശങ്ങളെയും -2 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{7}{-2}\right)x=\frac{3}{-2}
-2 കൊണ്ട് ഹരിക്കുന്നത്, -2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}+\frac{7}{2}x=\frac{3}{-2}
-2 കൊണ്ട് -7 എന്നതിനെ ഹരിക്കുക.
x^{2}+\frac{7}{2}x=-\frac{3}{2}
-2 കൊണ്ട് 3 എന്നതിനെ ഹരിക്കുക.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(\frac{7}{4}\right)^{2}
\frac{7}{4} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ \frac{7}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{7}{4} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{7}{4} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{3}{2} എന്നത് \frac{49}{16} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{7}{4}\right)^{2}=\frac{25}{16}
x^{2}+\frac{7}{2}x+\frac{49}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{7}{4}=\frac{5}{4} x+\frac{7}{4}=-\frac{5}{4}
ലഘൂകരിക്കുക.
x=-\frac{1}{2} x=-3
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{7}{4} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}