x എന്നതിനായി സോൾവ് ചെയ്യുക
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{13}{9}x^{2}+1-x^{2}\leq \frac{4}{3}x
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
\frac{4}{9}x^{2}+1\leq \frac{4}{3}x
\frac{4}{9}x^{2} നേടാൻ \frac{13}{9}x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
\frac{4}{9}x^{2}+1-\frac{4}{3}x\leq 0
ഇരുവശങ്ങളിൽ നിന്നും \frac{4}{3}x കുറയ്ക്കുക.
\frac{4}{9}x^{2}+1-\frac{4}{3}x=0
അസമത്വം സോൾവ് ചെയ്യാൻ, ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{4}{9}\times 1}}{\frac{4}{9}\times 2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ഈ ദ്വിമാന സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a എന്നതിനായി \frac{4}{9} എന്നതും b എന്നതിനായി -\frac{4}{3} എന്നതും c എന്നതിനായി 1 എന്നതും ദ്വിമാന സൂത്രവാക്യത്തിൽ വ്യവകലനം ചെയ്യുക.
x=\frac{\frac{4}{3}±0}{\frac{8}{9}}
കണക്കുകൂട്ടലുകൾ നടത്തുക.
x=\frac{3}{2}
പരിഹാരങ്ങൾ ഒന്നുതന്നെയാണ്.
\frac{4}{9}\left(x-\frac{3}{2}\right)^{2}\leq 0
ലഭ്യമാക്കിയ പരിഹാരങ്ങൾ ഉപയോഗിച്ച് വ്യത്യാസം തിരുത്തിയെഴുതുക.
x=\frac{3}{2}
x=\frac{3}{2} എന്നതിനായി അസമത്വം ഹോൾഡ് ചെയ്തിരിക്കുന്നു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}