മൂല്യനിർണ്ണയം ചെയ്യുക
-2
ഘടകം
-2
ക്വിസ്
Arithmetic
ഇതിന് സമാനമായ 5 ചോദ്യങ്ങൾ:
\frac{ 1 }{ -2- \sqrt{ 2 } } + \frac{ 1 }{ -2+ \sqrt{ 2 } }
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{-2+\sqrt{2}}{\left(-2-\sqrt{2}\right)\left(-2+\sqrt{2}\right)}+\frac{1}{-2+\sqrt{2}}
-2+\sqrt{2} കൊണ്ട് അംശവും ഛേദവും ഗുണിക്കുന്നതിലൂടെ \frac{1}{-2-\sqrt{2}} എന്നതിന്റെ ഛേദം റേഷണലൈസ് ചെയ്യുക.
\frac{-2+\sqrt{2}}{\left(-2\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{1}{-2+\sqrt{2}}
\left(-2-\sqrt{2}\right)\left(-2+\sqrt{2}\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-2+\sqrt{2}}{4-2}+\frac{1}{-2+\sqrt{2}}
-2 സ്ക്വയർ ചെയ്യുക. \sqrt{2} സ്ക്വയർ ചെയ്യുക.
\frac{-2+\sqrt{2}}{2}+\frac{1}{-2+\sqrt{2}}
2 നേടാൻ 4 എന്നതിൽ നിന്ന് 2 കുറയ്ക്കുക.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{\left(-2+\sqrt{2}\right)\left(-2-\sqrt{2}\right)}
-2-\sqrt{2} കൊണ്ട് അംശവും ഛേദവും ഗുണിക്കുന്നതിലൂടെ \frac{1}{-2+\sqrt{2}} എന്നതിന്റെ ഛേദം റേഷണലൈസ് ചെയ്യുക.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{\left(-2\right)^{2}-\left(\sqrt{2}\right)^{2}}
\left(-2+\sqrt{2}\right)\left(-2-\sqrt{2}\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{4-2}
-2 സ്ക്വയർ ചെയ്യുക. \sqrt{2} സ്ക്വയർ ചെയ്യുക.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{2}
2 നേടാൻ 4 എന്നതിൽ നിന്ന് 2 കുറയ്ക്കുക.
\frac{-2+\sqrt{2}-2-\sqrt{2}}{2}
\frac{-2+\sqrt{2}}{2}, \frac{-2-\sqrt{2}}{2} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{-4}{2}
-2+\sqrt{2}-2-\sqrt{2} എന്നതിൽ കണക്കുകൂട്ടലുകൾ നടത്തുക.
-2
-2 ലഭിക്കാൻ 2 ഉപയോഗിച്ച് -4 വിഭജിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}