പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\left(0\times 5268-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും x കൊണ്ട് ഗുണിക്കുക.
\left(0-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
0 നേടാൻ 0, 5268 എന്നിവ ഗുണിക്കുക.
-x\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
-x\left(0\times 268-x\right)=72\times 10^{-4}x
0 നേടാൻ 0, 0 എന്നിവ ഗുണിക്കുക.
-x\left(0-x\right)=72\times 10^{-4}x
0 നേടാൻ 0, 268 എന്നിവ ഗുണിക്കുക.
-x\left(-1\right)x=72\times 10^{-4}x
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
xx=72\times 10^{-4}x
1 നേടാൻ -1, -1 എന്നിവ ഗുണിക്കുക.
x^{2}=72\times 10^{-4}x
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
x^{2}=72\times \frac{1}{10000}x
-4-ന്റെ പവറിലേക്ക് 10 കണക്കാക്കി \frac{1}{10000} നേടുക.
x^{2}=\frac{9}{1250}x
\frac{9}{1250} നേടാൻ 72, \frac{1}{10000} എന്നിവ ഗുണിക്കുക.
x^{2}-\frac{9}{1250}x=0
ഇരുവശങ്ങളിൽ നിന്നും \frac{9}{1250}x കുറയ്ക്കുക.
x\left(x-\frac{9}{1250}\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=\frac{9}{1250}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, x-\frac{9}{1250}=0 എന്നിവ സോൾവ് ചെയ്യുക.
x=\frac{9}{1250}
x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.
\left(0\times 5268-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും x കൊണ്ട് ഗുണിക്കുക.
\left(0-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
0 നേടാൻ 0, 5268 എന്നിവ ഗുണിക്കുക.
-x\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
-x\left(0\times 268-x\right)=72\times 10^{-4}x
0 നേടാൻ 0, 0 എന്നിവ ഗുണിക്കുക.
-x\left(0-x\right)=72\times 10^{-4}x
0 നേടാൻ 0, 268 എന്നിവ ഗുണിക്കുക.
-x\left(-1\right)x=72\times 10^{-4}x
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
xx=72\times 10^{-4}x
1 നേടാൻ -1, -1 എന്നിവ ഗുണിക്കുക.
x^{2}=72\times 10^{-4}x
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
x^{2}=72\times \frac{1}{10000}x
-4-ന്റെ പവറിലേക്ക് 10 കണക്കാക്കി \frac{1}{10000} നേടുക.
x^{2}=\frac{9}{1250}x
\frac{9}{1250} നേടാൻ 72, \frac{1}{10000} എന്നിവ ഗുണിക്കുക.
x^{2}-\frac{9}{1250}x=0
ഇരുവശങ്ങളിൽ നിന്നും \frac{9}{1250}x കുറയ്ക്കുക.
x=\frac{-\left(-\frac{9}{1250}\right)±\sqrt{\left(-\frac{9}{1250}\right)^{2}}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -\frac{9}{1250} എന്നതും c എന്നതിനായി 0 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-\frac{9}{1250}\right)±\frac{9}{1250}}{2}
\left(-\frac{9}{1250}\right)^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{\frac{9}{1250}±\frac{9}{1250}}{2}
-\frac{9}{1250} എന്നതിന്‍റെ വിപരീതം \frac{9}{1250} ആണ്.
x=\frac{\frac{9}{625}}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{\frac{9}{1250}±\frac{9}{1250}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{9}{1250} എന്നത് \frac{9}{1250} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{9}{1250}
2 കൊണ്ട് \frac{9}{625} എന്നതിനെ ഹരിക്കുക.
x=\frac{0}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{\frac{9}{1250}±\frac{9}{1250}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് \frac{9}{1250} എന്നതിൽ നിന്ന് \frac{9}{1250} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=0
2 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=\frac{9}{1250} x=0
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x=\frac{9}{1250}
x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.
\left(0\times 5268-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും x കൊണ്ട് ഗുണിക്കുക.
\left(0-x\right)\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
0 നേടാൻ 0, 5268 എന്നിവ ഗുണിക്കുക.
-x\left(0\times 0\times 268-x\right)=72\times 10^{-4}x
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
-x\left(0\times 268-x\right)=72\times 10^{-4}x
0 നേടാൻ 0, 0 എന്നിവ ഗുണിക്കുക.
-x\left(0-x\right)=72\times 10^{-4}x
0 നേടാൻ 0, 268 എന്നിവ ഗുണിക്കുക.
-x\left(-1\right)x=72\times 10^{-4}x
പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
xx=72\times 10^{-4}x
1 നേടാൻ -1, -1 എന്നിവ ഗുണിക്കുക.
x^{2}=72\times 10^{-4}x
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
x^{2}=72\times \frac{1}{10000}x
-4-ന്റെ പവറിലേക്ക് 10 കണക്കാക്കി \frac{1}{10000} നേടുക.
x^{2}=\frac{9}{1250}x
\frac{9}{1250} നേടാൻ 72, \frac{1}{10000} എന്നിവ ഗുണിക്കുക.
x^{2}-\frac{9}{1250}x=0
ഇരുവശങ്ങളിൽ നിന്നും \frac{9}{1250}x കുറയ്ക്കുക.
x^{2}-\frac{9}{1250}x+\left(-\frac{9}{2500}\right)^{2}=\left(-\frac{9}{2500}\right)^{2}
-\frac{9}{2500} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{9}{1250}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{9}{2500} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{9}{1250}x+\frac{81}{6250000}=\frac{81}{6250000}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{9}{2500} സ്ക്വയർ ചെയ്യുക.
\left(x-\frac{9}{2500}\right)^{2}=\frac{81}{6250000}
x^{2}-\frac{9}{1250}x+\frac{81}{6250000} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{9}{2500}\right)^{2}}=\sqrt{\frac{81}{6250000}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{9}{2500}=\frac{9}{2500} x-\frac{9}{2500}=-\frac{9}{2500}
ലഘൂകരിക്കുക.
x=\frac{9}{1250} x=0
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{9}{2500} ചേർക്കുക.
x=\frac{9}{1250}
x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.