പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഘടകം
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{x-1}{\left(x+1\right)\left(x+2\right)}+\frac{6}{\left(x-2\right)\left(-x-1\right)}-\frac{10-x}{4-x^{2}}
x^{2}+3x+2 ഘടകക്രിയ ചെയ്യുക. 2+x-x^{2} ഘടകക്രിയ ചെയ്യുക.
\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}+\frac{6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. \left(x+1\right)\left(x+2\right), \left(x-2\right)\left(-x-1\right) എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം \left(x-2\right)\left(x+1\right)\left(x+2\right) ആണ്. \frac{x-1}{\left(x+1\right)\left(x+2\right)}, \frac{x-2}{x-2} എന്നിവ തമ്മിൽ ഗുണിക്കുക. \frac{6}{\left(x-2\right)\left(-x-1\right)}, \frac{-\left(x+2\right)}{-\left(x+2\right)} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\left(x-1\right)\left(x-2\right)+6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}, \frac{6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{x^{2}-2x-x+2-6x-12}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
\left(x-1\right)\left(x-2\right)+6\left(-1\right)\left(x+2\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{x^{2}-9x-10}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
x^{2}-2x-x+2-6x-12 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{\left(x-10\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
\frac{x^{2}-9x-10}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} എന്നതിൽ ഇതിനകം ഫാക്‌ടർ ചെയ്‌തിട്ടില്ലാത്ത ഗണനപ്രയോഗങ്ങൾ ഫാക്‌ടർ ചെയ്യുക.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും x+1 ഒഴിവാക്കുക.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{10-x}{\left(x-2\right)\left(-x-2\right)}
4-x^{2} ഘടകക്രിയ ചെയ്യുക.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{-\left(10-x\right)}{\left(x-2\right)\left(x+2\right)}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. \left(x-2\right)\left(x+2\right), \left(x-2\right)\left(-x-2\right) എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം \left(x-2\right)\left(x+2\right) ആണ്. \frac{10-x}{\left(x-2\right)\left(-x-2\right)}, \frac{-1}{-1} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x-10-\left(-\left(10-x\right)\right)}{\left(x-2\right)\left(x+2\right)}
\frac{x-10}{\left(x-2\right)\left(x+2\right)}, \frac{-\left(10-x\right)}{\left(x-2\right)\left(x+2\right)} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്‌ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{x-10+10-x}{\left(x-2\right)\left(x+2\right)}
x-10-\left(-\left(10-x\right)\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{0}{\left(x-2\right)\left(x+2\right)}
x-10+10-x എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
0
പൂജ്യമല്ലാത്ത ഏത് സംഖ്യയെയും പൂജ്യം കൊണ്ട് ഹരിക്കുന്നത് പൂജ്യം നൽകുന്നു.