പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x=3x\left(x-1\right)+1
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 1 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും x-1 കൊണ്ട് ഗുണിക്കുക.
x=3x^{2}-3x+1
x-1 കൊണ്ട് 3x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x-3x^{2}=-3x+1
ഇരുവശങ്ങളിൽ നിന്നും 3x^{2} കുറയ്ക്കുക.
x-3x^{2}+3x=1
3x ഇരു വശങ്ങളിലും ചേർക്കുക.
4x-3x^{2}=1
4x നേടാൻ x, 3x എന്നിവ യോജിപ്പിക്കുക.
4x-3x^{2}-1=0
ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
-3x^{2}+4x-1=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-4±\sqrt{4^{2}-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -3 എന്നതും b എന്നതിനായി 4 എന്നതും c എന്നതിനായി -1 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-4±\sqrt{16-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
4 സ്ക്വയർ ചെയ്യുക.
x=\frac{-4±\sqrt{16+12\left(-1\right)}}{2\left(-3\right)}
-4, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-4±\sqrt{16-12}}{2\left(-3\right)}
12, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-4±\sqrt{4}}{2\left(-3\right)}
16, -12 എന്നതിൽ ചേർക്കുക.
x=\frac{-4±2}{2\left(-3\right)}
4 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-4±2}{-6}
2, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-\frac{2}{-6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-4±2}{-6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -4, 2 എന്നതിൽ ചേർക്കുക.
x=\frac{1}{3}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-2}{-6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=-\frac{6}{-6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-4±2}{-6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -4 എന്നതിൽ നിന്ന് 2 വ്യവകലനം ചെയ്യുക.
x=1
-6 കൊണ്ട് -6 എന്നതിനെ ഹരിക്കുക.
x=\frac{1}{3} x=1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x=\frac{1}{3}
x എന്ന വേരിയബിൾ 1 എന്നതിന് തുല്യമാക്കാനാകില്ല.
x=3x\left(x-1\right)+1
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 1 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും x-1 കൊണ്ട് ഗുണിക്കുക.
x=3x^{2}-3x+1
x-1 കൊണ്ട് 3x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x-3x^{2}=-3x+1
ഇരുവശങ്ങളിൽ നിന്നും 3x^{2} കുറയ്ക്കുക.
x-3x^{2}+3x=1
3x ഇരു വശങ്ങളിലും ചേർക്കുക.
4x-3x^{2}=1
4x നേടാൻ x, 3x എന്നിവ യോജിപ്പിക്കുക.
-3x^{2}+4x=1
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{-3x^{2}+4x}{-3}=\frac{1}{-3}
ഇരുവശങ്ങളെയും -3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{4}{-3}x=\frac{1}{-3}
-3 കൊണ്ട് ഹരിക്കുന്നത്, -3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{4}{3}x=\frac{1}{-3}
-3 കൊണ്ട് 4 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{4}{3}x=-\frac{1}{3}
-3 കൊണ്ട് 1 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{2}{3}\right)^{2}
-\frac{2}{3} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{4}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{2}{3} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{2}{3} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{1}{3} എന്നത് \frac{4}{9} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{2}{3}\right)^{2}=\frac{1}{9}
x^{2}-\frac{4}{3}x+\frac{4}{9} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{2}{3}=\frac{1}{3} x-\frac{2}{3}=-\frac{1}{3}
ലഘൂകരിക്കുക.
x=1 x=\frac{1}{3}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{2}{3} ചേർക്കുക.
x=\frac{1}{3}
x എന്ന വേരിയബിൾ 1 എന്നതിന് തുല്യമാക്കാനാകില്ല.