പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
a എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
n എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

ax=\left(x+1\right)\times 1n
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, a എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. x+1,a എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ a\left(x+1\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
ax=\left(x+1\right)n
1 കൊണ്ട് x+1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
ax=xn+n
n കൊണ്ട് x+1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
xa=nx+n
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{xa}{x}=\frac{nx+n}{x}
ഇരുവശങ്ങളെയും x കൊണ്ട് ഹരിക്കുക.
a=\frac{nx+n}{x}
x കൊണ്ട് ഹരിക്കുന്നത്, x കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
a=n+\frac{n}{x}
x കൊണ്ട് nx+n എന്നതിനെ ഹരിക്കുക.
a=n+\frac{n}{x}\text{, }a\neq 0
a എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.
ax=\left(x+1\right)\times 1n
x+1,a എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ a\left(x+1\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
ax=\left(x+1\right)n
1 കൊണ്ട് x+1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
ax=xn+n
n കൊണ്ട് x+1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
xn+n=ax
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
\left(x+1\right)n=ax
n അടങ്ങുന്ന എല്ലാ പദങ്ങളും യോജിപ്പിക്കുക.
\frac{\left(x+1\right)n}{x+1}=\frac{ax}{x+1}
ഇരുവശങ്ങളെയും x+1 കൊണ്ട് ഹരിക്കുക.
n=\frac{ax}{x+1}
x+1 കൊണ്ട് ഹരിക്കുന്നത്, x+1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.