പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x\left(x+5\right)-2\left(x-2\right)=0
2,3 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 6 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3x^{2}+15x-2\left(x-2\right)=0
x+5 കൊണ്ട് 3x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+15x-2x+4=0
x-2 കൊണ്ട് -2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+13x+4=0
13x നേടാൻ 15x, -2x എന്നിവ യോജിപ്പിക്കുക.
a+b=13 ab=3\times 4=12
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 3x^{2}+ax+bx+4 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,12 2,6 3,4
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും പോസിറ്റീവാണ്. 12 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+12=13 2+6=8 3+4=7
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=1 b=12
സൊല്യൂഷൻ എന്നത് 13 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(3x^{2}+x\right)+\left(12x+4\right)
3x^{2}+13x+4 എന്നത് \left(3x^{2}+x\right)+\left(12x+4\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(3x+1\right)+4\left(3x+1\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 4 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(3x+1\right)\left(x+4\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 3x+1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=-\frac{1}{3} x=-4
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 3x+1=0, x+4=0 എന്നിവ സോൾവ് ചെയ്യുക.
3x\left(x+5\right)-2\left(x-2\right)=0
2,3 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 6 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3x^{2}+15x-2\left(x-2\right)=0
x+5 കൊണ്ട് 3x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+15x-2x+4=0
x-2 കൊണ്ട് -2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+13x+4=0
13x നേടാൻ 15x, -2x എന്നിവ യോജിപ്പിക്കുക.
x=\frac{-13±\sqrt{13^{2}-4\times 3\times 4}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി 13 എന്നതും c എന്നതിനായി 4 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-13±\sqrt{169-4\times 3\times 4}}{2\times 3}
13 സ്ക്വയർ ചെയ്യുക.
x=\frac{-13±\sqrt{169-12\times 4}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-13±\sqrt{169-48}}{2\times 3}
-12, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-13±\sqrt{121}}{2\times 3}
169, -48 എന്നതിൽ ചേർക്കുക.
x=\frac{-13±11}{2\times 3}
121 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-13±11}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-\frac{2}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-13±11}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -13, 11 എന്നതിൽ ചേർക്കുക.
x=-\frac{1}{3}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-2}{6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=-\frac{24}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-13±11}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -13 എന്നതിൽ നിന്ന് 11 വ്യവകലനം ചെയ്യുക.
x=-4
6 കൊണ്ട് -24 എന്നതിനെ ഹരിക്കുക.
x=-\frac{1}{3} x=-4
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
3x\left(x+5\right)-2\left(x-2\right)=0
2,3 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 6 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3x^{2}+15x-2\left(x-2\right)=0
x+5 കൊണ്ട് 3x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+15x-2x+4=0
x-2 കൊണ്ട് -2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}+13x+4=0
13x നേടാൻ 15x, -2x എന്നിവ യോജിപ്പിക്കുക.
3x^{2}+13x=-4
ഇരുവശങ്ങളിൽ നിന്നും 4 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
\frac{3x^{2}+13x}{3}=-\frac{4}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{13}{3}x=-\frac{4}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+\frac{13}{3}x+\left(\frac{13}{6}\right)^{2}=-\frac{4}{3}+\left(\frac{13}{6}\right)^{2}
\frac{13}{6} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ \frac{13}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{13}{6} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{13}{3}x+\frac{169}{36}=-\frac{4}{3}+\frac{169}{36}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{13}{6} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{13}{3}x+\frac{169}{36}=\frac{121}{36}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{4}{3} എന്നത് \frac{169}{36} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{13}{6}\right)^{2}=\frac{121}{36}
x^{2}+\frac{13}{3}x+\frac{169}{36} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{13}{6}\right)^{2}}=\sqrt{\frac{121}{36}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{13}{6}=\frac{11}{6} x+\frac{13}{6}=-\frac{11}{6}
ലഘൂകരിക്കുക.
x=-\frac{1}{3} x=-4
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{13}{6} കുറയ്ക്കുക.