പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{x}{\frac{4}{x^{2}}-\frac{x^{2}}{x^{2}}}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. 1, \frac{x^{2}}{x^{2}} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x}{\frac{4-x^{2}}{x^{2}}}
\frac{4}{x^{2}}, \frac{x^{2}}{x^{2}} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്‌ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{xx^{2}}{4-x^{2}}
\frac{4-x^{2}}{x^{2}} എന്നതിന്‍റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് x ഗുണിക്കുന്നതിലൂടെ \frac{4-x^{2}}{x^{2}} കൊണ്ട് x എന്നതിനെ ഹരിക്കുക.
\frac{x^{3}}{4-x^{2}}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക. 3 ലഭ്യമാക്കാൻ 1, 2 എന്നിവ ചേർക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\frac{4}{x^{2}}-\frac{x^{2}}{x^{2}}})
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. 1, \frac{x^{2}}{x^{2}} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\frac{4-x^{2}}{x^{2}}})
\frac{4}{x^{2}}, \frac{x^{2}}{x^{2}} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്‌ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{xx^{2}}{4-x^{2}})
\frac{4-x^{2}}{x^{2}} എന്നതിന്‍റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് x ഗുണിക്കുന്നതിലൂടെ \frac{4-x^{2}}{x^{2}} കൊണ്ട് x എന്നതിനെ ഹരിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}}{4-x^{2}})
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക. 3 ലഭ്യമാക്കാൻ 1, 2 എന്നിവ ചേർക്കുക.
\frac{\left(-x^{2}+4\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3})-x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2}+4)}{\left(-x^{2}+4\right)^{2}}
ഏതെങ്കിലും രണ്ട് ഡിഫറൻഷ്യബിൾ ഫംഗ്‌ഷനുകൾക്കായി, രണ്ട് ഫംഗ്‌ഷൻ ഹരണഫലങ്ങളുടെ ഡെറിവേറ്റീവ് എന്നത് ന്യൂമറേറ്റർ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ഭിന്നസംഖ്യാഛേദവും ഭിന്നസംഖ്യാഛേദ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ന്യൂമറേറ്ററും തമ്മിലുള്ള വ്യവകലനവും ഒപ്പം ഭിന്നസംഖ്യാഛേദത്തിന്‍റെ സ്‌ക്വയർ കൊണ്ടുള്ള എല്ലാത്തിന്‍റെയും ഹരണവുമാണ്.
\frac{\left(-x^{2}+4\right)\times 3x^{3-1}-x^{3}\times 2\left(-1\right)x^{2-1}}{\left(-x^{2}+4\right)^{2}}
ഒരു പോളിനോമിലിന്‍റെ അനുമാനം അതിന്‍റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്‍റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്‍റെ അനുമാനം nax^{n-1} ആണ്.
\frac{\left(-x^{2}+4\right)\times 3x^{2}-x^{3}\left(-2\right)x^{1}}{\left(-x^{2}+4\right)^{2}}
ഗണിതം ചെയ്യുക.
\frac{-x^{2}\times 3x^{2}+4\times 3x^{2}-x^{3}\left(-2\right)x^{1}}{\left(-x^{2}+4\right)^{2}}
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് വികസിപ്പിക്കുക.
\frac{-3x^{2+2}+4\times 3x^{2}-\left(-2x^{3+1}\right)}{\left(-x^{2}+4\right)^{2}}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക.
\frac{-3x^{4}+12x^{2}-\left(-2x^{4}\right)}{\left(-x^{2}+4\right)^{2}}
ഗണിതം ചെയ്യുക.
\frac{\left(-3-\left(-2\right)\right)x^{4}+12x^{2}}{\left(-x^{2}+4\right)^{2}}
ഒരുപോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{-x^{4}+12x^{2}}{\left(-x^{2}+4\right)^{2}}
-3 എന്നതിൽ നിന്ന് -2 വ്യവകലനം ചെയ്യുക.
\frac{x^{2}\left(-x^{2}+12x^{0}\right)}{\left(-x^{2}+4\right)^{2}}
x^{2} ഘടക ലഘൂകരണം ചെയ്യുക.
\frac{x^{2}\left(-x^{2}+12\times 1\right)}{\left(-x^{2}+4\right)^{2}}
0, t^{0}=1 ഒഴികെ ഏതു പദത്തിനും t.
\frac{x^{2}\left(-x^{2}+12\right)}{\left(-x^{2}+4\right)^{2}}
ഏതു പദത്തിനും t, t\times 1=t, 1t=t.