പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
വികസിപ്പിക്കുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{3}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
x^{3}-1 ഘടകക്രിയ ചെയ്യുക.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. x^{3}, \frac{\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}, \frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്‌ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x}{\left(x-1\right)\left(x^{2}+x+1\right)}
x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{-2x+x^{6}-x^{3}-2x^{2}}{\left(x-1\right)\left(x^{2}+x+1\right)}
x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{-2x+x^{6}-x^{3}-2x^{2}}{x^{3}-1}
\left(x-1\right)\left(x^{2}+x+1\right) വികസിപ്പിക്കുക.
x^{3}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
x^{3}-1 ഘടകക്രിയ ചെയ്യുക.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. x^{3}, \frac{\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}, \frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്‌ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x}{\left(x-1\right)\left(x^{2}+x+1\right)}
x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{-2x+x^{6}-x^{3}-2x^{2}}{\left(x-1\right)\left(x^{2}+x+1\right)}
x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{-2x+x^{6}-x^{3}-2x^{2}}{x^{3}-1}
\left(x-1\right)\left(x^{2}+x+1\right) വികസിപ്പിക്കുക.