പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
m എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
n എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
m എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
n എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
x^{2}-7x+10,x-5 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-5\right)\left(x-2\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
x^{2}+mx+n=x^{2}-x-2
x+1 കൊണ്ട് x-2 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
mx+n=x^{2}-x-2-x^{2}
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
mx+n=-x-2
0 നേടാൻ x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
mx=-x-2-n
ഇരുവശങ്ങളിൽ നിന്നും n കുറയ്ക്കുക.
xm=-x-n-2
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{xm}{x}=\frac{-x-n-2}{x}
ഇരുവശങ്ങളെയും x കൊണ്ട് ഹരിക്കുക.
m=\frac{-x-n-2}{x}
x കൊണ്ട് ഹരിക്കുന്നത്, x കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
m=-\frac{x+n+2}{x}
x കൊണ്ട് -x-2-n എന്നതിനെ ഹരിക്കുക.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
x^{2}-7x+10,x-5 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-5\right)\left(x-2\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
x^{2}+mx+n=x^{2}-x-2
x+1 കൊണ്ട് x-2 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
mx+n=x^{2}-x-2-x^{2}
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
mx+n=-x-2
0 നേടാൻ x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
n=-x-2-mx
ഇരുവശങ്ങളിൽ നിന്നും mx കുറയ്ക്കുക.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
x^{2}-7x+10,x-5 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-5\right)\left(x-2\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
x^{2}+mx+n=x^{2}-x-2
x+1 കൊണ്ട് x-2 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
mx+n=x^{2}-x-2-x^{2}
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
mx+n=-x-2
0 നേടാൻ x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
mx=-x-2-n
ഇരുവശങ്ങളിൽ നിന്നും n കുറയ്ക്കുക.
xm=-x-n-2
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{xm}{x}=\frac{-x-n-2}{x}
ഇരുവശങ്ങളെയും x കൊണ്ട് ഹരിക്കുക.
m=\frac{-x-n-2}{x}
x കൊണ്ട് ഹരിക്കുന്നത്, x കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
m=-\frac{x+n+2}{x}
x കൊണ്ട് -x-2-n എന്നതിനെ ഹരിക്കുക.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
x^{2}-7x+10,x-5 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-5\right)\left(x-2\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
x^{2}+mx+n=x^{2}-x-2
x+1 കൊണ്ട് x-2 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
mx+n=x^{2}-x-2-x^{2}
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
mx+n=-x-2
0 നേടാൻ x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
n=-x-2-mx
ഇരുവശങ്ങളിൽ നിന്നും mx കുറയ്ക്കുക.