പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

4\left(x^{2}+2\right)-3\left(x^{2}+1\right)=x+5
3,4,12 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 12 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
4x^{2}+8-3\left(x^{2}+1\right)=x+5
x^{2}+2 കൊണ്ട് 4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}+8-3x^{2}-3=x+5
x^{2}+1 കൊണ്ട് -3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}+8-3=x+5
x^{2} നേടാൻ 4x^{2}, -3x^{2} എന്നിവ യോജിപ്പിക്കുക.
x^{2}+5=x+5
5 നേടാൻ 8 എന്നതിൽ നിന്ന് 3 കുറയ്ക്കുക.
x^{2}+5-x=5
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
x^{2}+5-x-5=0
ഇരുവശങ്ങളിൽ നിന്നും 5 കുറയ്ക്കുക.
x^{2}-x=0
0 നേടാൻ 5 എന്നതിൽ നിന്ന് 5 കുറയ്ക്കുക.
x\left(x-1\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, x-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
4\left(x^{2}+2\right)-3\left(x^{2}+1\right)=x+5
3,4,12 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 12 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
4x^{2}+8-3\left(x^{2}+1\right)=x+5
x^{2}+2 കൊണ്ട് 4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}+8-3x^{2}-3=x+5
x^{2}+1 കൊണ്ട് -3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}+8-3=x+5
x^{2} നേടാൻ 4x^{2}, -3x^{2} എന്നിവ യോജിപ്പിക്കുക.
x^{2}+5=x+5
5 നേടാൻ 8 എന്നതിൽ നിന്ന് 3 കുറയ്ക്കുക.
x^{2}+5-x=5
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
x^{2}+5-x-5=0
ഇരുവശങ്ങളിൽ നിന്നും 5 കുറയ്ക്കുക.
x^{2}-x=0
0 നേടാൻ 5 എന്നതിൽ നിന്ന് 5 കുറയ്ക്കുക.
x=\frac{-\left(-1\right)±\sqrt{1}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -1 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-1\right)±1}{2}
1 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{1±1}{2}
-1 എന്നതിന്‍റെ വിപരീതം 1 ആണ്.
x=\frac{2}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{1±1}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 1, 1 എന്നതിൽ ചേർക്കുക.
x=1
2 കൊണ്ട് 2 എന്നതിനെ ഹരിക്കുക.
x=\frac{0}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{1±1}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 1 എന്നതിൽ നിന്ന് 1 വ്യവകലനം ചെയ്യുക.
x=0
2 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=1 x=0
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
4\left(x^{2}+2\right)-3\left(x^{2}+1\right)=x+5
3,4,12 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 12 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
4x^{2}+8-3\left(x^{2}+1\right)=x+5
x^{2}+2 കൊണ്ട് 4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}+8-3x^{2}-3=x+5
x^{2}+1 കൊണ്ട് -3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}+8-3=x+5
x^{2} നേടാൻ 4x^{2}, -3x^{2} എന്നിവ യോജിപ്പിക്കുക.
x^{2}+5=x+5
5 നേടാൻ 8 എന്നതിൽ നിന്ന് 3 കുറയ്ക്കുക.
x^{2}+5-x=5
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
x^{2}+5-x-5=0
ഇരുവശങ്ങളിൽ നിന്നും 5 കുറയ്ക്കുക.
x^{2}-x=0
0 നേടാൻ 5 എന്നതിൽ നിന്ന് 5 കുറയ്ക്കുക.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -1-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{1}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{2} സ്ക്വയർ ചെയ്യുക.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
x^{2}-x+\frac{1}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
ലഘൂകരിക്കുക.
x=1 x=0
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1}{2} ചേർക്കുക.