പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
k എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{k^{8}}{k^{1}}
ഗണനപ്രയോഗം ലഘൂകരിക്കാൻ എക്സ്പോണന്‍റുകളുടെ നിയമങ്ങൾ ഉപയോഗിക്കുക.
k^{8-1}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഹരിക്കാൻ, ന്യൂമറേറ്ററിന്‍റെ എക്സ്‌പോണന്‍റിൽ നിന്നും ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്‌പോണന്‍റ് കുറയ്‌ക്കുക.
k^{7}
8 എന്നതിൽ നിന്ന് 1 വ്യവകലനം ചെയ്യുക.
k^{8}\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1}{k})+\frac{1}{k}\frac{\mathrm{d}}{\mathrm{d}k}(k^{8})
ഏതെങ്കിലും രണ്ട് ഡിഫറൻഷ്യബിൾ കാര്യപ്രവര്‍ത്തനങ്ങൾക്കായി, രണ്ട് കാര്യപ്രവര്‍ത്തന ഉൽപ്പന്നങ്ങളുടെ ഡെറിവേറ്റീവ് എന്നത് രണ്ടാമത്തേതിന്റെ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ആദ്യ കാര്യപ്രവര്‍ത്തനവും ആദ്യത്തേതിന്റെ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന രണ്ടാമത്തെ കാര്യപ്രവര്‍ത്തനവും തമ്മിലുള്ള സങ്കലനമാണ്.
k^{8}\left(-1\right)k^{-1-1}+\frac{1}{k}\times 8k^{8-1}
ഒരു പോളിനോമിലിന്‍റെ അനുമാനം അതിന്‍റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്‍റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്‍റെ അനുമാനം nax^{n-1} ആണ്.
k^{8}\left(-1\right)k^{-2}+\frac{1}{k}\times 8k^{7}
ലഘൂകരിക്കുക.
-k^{8-2}+8k^{-1+7}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക.
-k^{6}+8k^{6}
ലഘൂകരിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1}{1}k^{8-1})
ഒരേ ബേസിന്‍റെ പവറുകൾ ഹരിക്കാൻ, ന്യൂമറേറ്ററിന്‍റെ എക്സ്‌പോണന്‍റിൽ നിന്നും ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്‌പോണന്‍റ് കുറയ്‌ക്കുക.
\frac{\mathrm{d}}{\mathrm{d}k}(k^{7})
ഗണിതം ചെയ്യുക.
7k^{7-1}
ഒരു പോളിനോമിലിന്‍റെ അനുമാനം അതിന്‍റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്‍റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്‍റെ അനുമാനം nax^{n-1} ആണ്.
7k^{6}
ഗണിതം ചെയ്യുക.