\frac { d } { d x } ( \frac { 1 + \sin x } { \cos x } ) = \frac { \cos x } { d x }
d എന്നതിനായി സോൾവ് ചെയ്യുക
d=\frac{\left(\cos(x)\right)^{3}}{x\left(\sin(x)+1\right)}
x\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
dx\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+\sin(x)}{\cos(x)})=\cos(x)
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, d എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും dx കൊണ്ട് ഗുണിക്കുക.
x\left(-\frac{\left(\sin(x)+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))}{\left(\cos(x)\right)^{2}}+\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))}{\cos(x)}\right)d=\cos(x)
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{x\left(-\frac{\left(\sin(x)+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))}{\left(\cos(x)\right)^{2}}+\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))}{\cos(x)}\right)d}{x\left(-\frac{\left(\sin(x)+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))}{\left(\cos(x)\right)^{2}}+\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))}{\cos(x)}\right)}=\frac{\cos(x)}{x\left(-\frac{\left(\sin(x)+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))}{\left(\cos(x)\right)^{2}}+\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))}{\cos(x)}\right)}
ഇരുവശങ്ങളെയും x\left(\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))\left(\cos(x)\right)^{-1}-\left(1+\sin(x)\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))\left(\cos(x)\right)^{-2}\right) കൊണ്ട് ഹരിക്കുക.
d=\frac{\cos(x)}{x\left(-\frac{\left(\sin(x)+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))}{\left(\cos(x)\right)^{2}}+\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))}{\cos(x)}\right)}
x\left(\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))\left(\cos(x)\right)^{-1}-\left(1+\sin(x)\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))\left(\cos(x)\right)^{-2}\right) കൊണ്ട് ഹരിക്കുന്നത്, x\left(\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))\left(\cos(x)\right)^{-1}-\left(1+\sin(x)\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))\left(\cos(x)\right)^{-2}\right) കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
d=\frac{\left(\cos(x)\right)^{3}}{x\left(\sin(x)+1\right)}
x\left(\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))\left(\cos(x)\right)^{-1}-\left(1+\sin(x)\right)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))\left(\cos(x)\right)^{-2}\right) കൊണ്ട് \cos(x) എന്നതിനെ ഹരിക്കുക.
d=\frac{\left(\cos(x)\right)^{3}}{x\left(\sin(x)+1\right)}\text{, }d\neq 0
d എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}