പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
b എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{b^{85}}{b^{121}}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക. 121 ലഭ്യമാക്കാൻ 31, 90 എന്നിവ ചേർക്കുക.
\frac{1}{b^{36}}
b^{121} എന്നത് b^{85}b^{36} എന്നായി തിരുത്തിയെഴുതുക. ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും b^{85} ഒഴിവാക്കുക.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{85}}{b^{121}})
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക. 121 ലഭ്യമാക്കാൻ 31, 90 എന്നിവ ചേർക്കുക.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{1}{b^{36}})
b^{121} എന്നത് b^{85}b^{36} എന്നായി തിരുത്തിയെഴുതുക. ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും b^{85} ഒഴിവാക്കുക.
-\left(b^{36}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}b}(b^{36})
f\left(u\right), u=g\left(x\right) എന്നീ രണ്ട് ഡിഫറൻഷ്യബിൾ ഫംഗ്‌ഷനുകളുടെ കമ്പോസിഷൻ F ആണെങ്കിൽ, അതായത് F\left(x\right)=f\left(g\left(x\right)\right) ആണെങ്കിൽ, തുടർന്ന് F എന്നതിന്‍റെ ഡെറിവേറ്റീവ് എന്നത് x എന്നതുമായി ബന്ധപ്പെട്ട് g എന്നതിന്‍റെ ഡെറിവേറ്റീവിനെ ഗുണിക്കുന്ന u എന്നതുമായി ബന്ധപ്പെട്ട f എന്നതിന്‍റെ ഡെറിവേറ്റീവ് ആയിരിക്കും, അതായത് \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(b^{36}\right)^{-2}\times 36b^{36-1}
ഒരു പോളിനോമിലിന്‍റെ അനുമാനം അതിന്‍റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്‍റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്‍റെ അനുമാനം nax^{n-1} ആണ്.
-36b^{35}\left(b^{36}\right)^{-2}
ലഘൂകരിക്കുക.