മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{2w+13}{w^{2}-9}
w എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
-\frac{2\left(w^{2}+13w+9\right)}{\left(w^{2}-9\right)^{2}}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{7}{\left(w-3\right)\left(w+3\right)}+\frac{2}{w-3}
w^{2}-9 ഘടകക്രിയ ചെയ്യുക.
\frac{7}{\left(w-3\right)\left(w+3\right)}+\frac{2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. \left(w-3\right)\left(w+3\right), w-3 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം \left(w-3\right)\left(w+3\right) ആണ്. \frac{2}{w-3}, \frac{w+3}{w+3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{7+2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)}
\frac{7}{\left(w-3\right)\left(w+3\right)}, \frac{2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{7+2w+6}{\left(w-3\right)\left(w+3\right)}
7+2\left(w+3\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{13+2w}{\left(w-3\right)\left(w+3\right)}
7+2w+6 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{13+2w}{w^{2}-9}
\left(w-3\right)\left(w+3\right) വികസിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{7}{\left(w-3\right)\left(w+3\right)}+\frac{2}{w-3})
w^{2}-9 ഘടകക്രിയ ചെയ്യുക.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{7}{\left(w-3\right)\left(w+3\right)}+\frac{2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)})
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. \left(w-3\right)\left(w+3\right), w-3 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം \left(w-3\right)\left(w+3\right) ആണ്. \frac{2}{w-3}, \frac{w+3}{w+3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{7+2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)})
\frac{7}{\left(w-3\right)\left(w+3\right)}, \frac{2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{7+2w+6}{\left(w-3\right)\left(w+3\right)})
7+2\left(w+3\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{13+2w}{\left(w-3\right)\left(w+3\right)})
7+2w+6 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{13+2w}{w^{2}-9})
\left(w-3\right)\left(w+3\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 3 സ്ക്വയർ ചെയ്യുക.
\frac{\left(w^{2}-9\right)\frac{\mathrm{d}}{\mathrm{d}w}(2w^{1}+13)-\left(2w^{1}+13\right)\frac{\mathrm{d}}{\mathrm{d}w}(w^{2}-9)}{\left(w^{2}-9\right)^{2}}
ഏതെങ്കിലും രണ്ട് ഡിഫറൻഷ്യബിൾ ഫംഗ്ഷനുകൾക്കായി, രണ്ട് ഫംഗ്ഷൻ ഹരണഫലങ്ങളുടെ ഡെറിവേറ്റീവ് എന്നത് ന്യൂമറേറ്റർ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ഭിന്നസംഖ്യാഛേദവും ഭിന്നസംഖ്യാഛേദ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ന്യൂമറേറ്ററും തമ്മിലുള്ള വ്യവകലനവും ഒപ്പം ഭിന്നസംഖ്യാഛേദത്തിന്റെ സ്ക്വയർ കൊണ്ടുള്ള എല്ലാത്തിന്റെയും ഹരണവുമാണ്.
\frac{\left(w^{2}-9\right)\times 2w^{1-1}-\left(2w^{1}+13\right)\times 2w^{2-1}}{\left(w^{2}-9\right)^{2}}
ഒരു പോളിനോമിലിന്റെ അനുമാനം അതിന്റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്റെ അനുമാനം nax^{n-1} ആണ്.
\frac{\left(w^{2}-9\right)\times 2w^{0}-\left(2w^{1}+13\right)\times 2w^{1}}{\left(w^{2}-9\right)^{2}}
ഗണിതം ചെയ്യുക.
\frac{w^{2}\times 2w^{0}-9\times 2w^{0}-\left(2w^{1}\times 2w^{1}+13\times 2w^{1}\right)}{\left(w^{2}-9\right)^{2}}
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് വികസിപ്പിക്കുക.
\frac{2w^{2}-9\times 2w^{0}-\left(2\times 2w^{1+1}+13\times 2w^{1}\right)}{\left(w^{2}-9\right)^{2}}
ഒരേ ബേസിന്റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്റുകൾ ചേർക്കുക.
\frac{2w^{2}-18w^{0}-\left(4w^{2}+26w^{1}\right)}{\left(w^{2}-9\right)^{2}}
ഗണിതം ചെയ്യുക.
\frac{2w^{2}-18w^{0}-4w^{2}-26w^{1}}{\left(w^{2}-9\right)^{2}}
അനാവശ്യ പരാന്തിസിസ് നീക്കംചെയ്യുക.
\frac{\left(2-4\right)w^{2}-18w^{0}-26w^{1}}{\left(w^{2}-9\right)^{2}}
ഒരുപോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{-2w^{2}-18w^{0}-26w^{1}}{\left(w^{2}-9\right)^{2}}
2 എന്നതിൽ നിന്ന് 4 വ്യവകലനം ചെയ്യുക.
\frac{-2w^{2}-18w^{0}-26w}{\left(w^{2}-9\right)^{2}}
ഏതു പദത്തിനും t, t^{1}=t.
\frac{-2w^{2}-18-26w}{\left(w^{2}-9\right)^{2}}
0, t^{0}=1 ഒഴികെ ഏതു പദത്തിനും t.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}