x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-5
x=8
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
5\times 6=\left(x+2\right)\left(x-5\right)
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -2 എന്നതിന് തുല്യമാക്കാനാകില്ല. 2x+4,10 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 10\left(x+2\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
30=\left(x+2\right)\left(x-5\right)
30 നേടാൻ 5, 6 എന്നിവ ഗുണിക്കുക.
30=x^{2}-3x-10
x-5 കൊണ്ട് x+2 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}-3x-10=30
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
x^{2}-3x-10-30=0
ഇരുവശങ്ങളിൽ നിന്നും 30 കുറയ്ക്കുക.
x^{2}-3x-40=0
-40 നേടാൻ -10 എന്നതിൽ നിന്ന് 30 കുറയ്ക്കുക.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-40\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -3 എന്നതും c എന്നതിനായി -40 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-40\right)}}{2}
-3 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-3\right)±\sqrt{9+160}}{2}
-4, -40 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-3\right)±\sqrt{169}}{2}
9, 160 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-3\right)±13}{2}
169 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{3±13}{2}
-3 എന്നതിന്റെ വിപരീതം 3 ആണ്.
x=\frac{16}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{3±13}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3, 13 എന്നതിൽ ചേർക്കുക.
x=8
2 കൊണ്ട് 16 എന്നതിനെ ഹരിക്കുക.
x=-\frac{10}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{3±13}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3 എന്നതിൽ നിന്ന് 13 വ്യവകലനം ചെയ്യുക.
x=-5
2 കൊണ്ട് -10 എന്നതിനെ ഹരിക്കുക.
x=8 x=-5
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
5\times 6=\left(x+2\right)\left(x-5\right)
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -2 എന്നതിന് തുല്യമാക്കാനാകില്ല. 2x+4,10 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 10\left(x+2\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
30=\left(x+2\right)\left(x-5\right)
30 നേടാൻ 5, 6 എന്നിവ ഗുണിക്കുക.
30=x^{2}-3x-10
x-5 കൊണ്ട് x+2 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}-3x-10=30
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
x^{2}-3x=30+10
10 ഇരു വശങ്ങളിലും ചേർക്കുക.
x^{2}-3x=40
40 ലഭ്യമാക്കാൻ 30, 10 എന്നിവ ചേർക്കുക.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=40+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{3}{2} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-3x+\frac{9}{4}=40+\frac{9}{4}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-3x+\frac{9}{4}=\frac{169}{4}
40, \frac{9}{4} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{3}{2}\right)^{2}=\frac{169}{4}
x^{2}-3x+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{2}=\frac{13}{2} x-\frac{3}{2}=-\frac{13}{2}
ലഘൂകരിക്കുക.
x=8 x=-5
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{3}{2} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}