പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3}{x-7}+\frac{4}{x+3}
x^{2}-4x-21 ഘടകക്രിയ ചെയ്യുക.
\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. \left(x-7\right)\left(x+3\right), x-7 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം \left(x-7\right)\left(x+3\right) ആണ്. \frac{3}{x-7}, \frac{x+3}{x+3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{5x-3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
\frac{5x}{\left(x-7\right)\left(x+3\right)}, \frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്‌ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{5x-3x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
5x-3\left(x+3\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
5x-3x-9 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. \left(x-7\right)\left(x+3\right), x+3 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം \left(x-7\right)\left(x+3\right) ആണ്. \frac{4}{x+3}, \frac{x-7}{x-7} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{2x-9+4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)}
\frac{2x-9}{\left(x-7\right)\left(x+3\right)}, \frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{2x-9+4x-28}{\left(x-7\right)\left(x+3\right)}
2x-9+4\left(x-7\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{6x-37}{\left(x-7\right)\left(x+3\right)}
2x-9+4x-28 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{6x-37}{x^{2}-4x-21}
\left(x-7\right)\left(x+3\right) വികസിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3}{x-7}+\frac{4}{x+3})
x^{2}-4x-21 ഘടകക്രിയ ചെയ്യുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. \left(x-7\right)\left(x+3\right), x-7 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം \left(x-7\right)\left(x+3\right) ആണ്. \frac{3}{x-7}, \frac{x+3}{x+3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
\frac{5x}{\left(x-7\right)\left(x+3\right)}, \frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്‌ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-3x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
5x-3\left(x+3\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
5x-3x-9 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)})
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. \left(x-7\right)\left(x+3\right), x+3 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം \left(x-7\right)\left(x+3\right) ആണ്. \frac{4}{x+3}, \frac{x-7}{x-7} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9+4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)})
\frac{2x-9}{\left(x-7\right)\left(x+3\right)}, \frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9+4x-28}{\left(x-7\right)\left(x+3\right)})
2x-9+4\left(x-7\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x-37}{\left(x-7\right)\left(x+3\right)})
2x-9+4x-28 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x-37}{x^{2}-4x-21})
x+3 കൊണ്ട് x-7 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\frac{\left(x^{2}-4x^{1}-21\right)\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}-37)-\left(6x^{1}-37\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}-21)}{\left(x^{2}-4x^{1}-21\right)^{2}}
ഏതെങ്കിലും രണ്ട് ഡിഫറൻഷ്യബിൾ ഫംഗ്‌ഷനുകൾക്കായി, രണ്ട് ഫംഗ്‌ഷൻ ഹരണഫലങ്ങളുടെ ഡെറിവേറ്റീവ് എന്നത് ന്യൂമറേറ്റർ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ഭിന്നസംഖ്യാഛേദവും ഭിന്നസംഖ്യാഛേദ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ന്യൂമറേറ്ററും തമ്മിലുള്ള വ്യവകലനവും ഒപ്പം ഭിന്നസംഖ്യാഛേദത്തിന്‍റെ സ്‌ക്വയർ കൊണ്ടുള്ള എല്ലാത്തിന്‍റെയും ഹരണവുമാണ്.
\frac{\left(x^{2}-4x^{1}-21\right)\times 6x^{1-1}-\left(6x^{1}-37\right)\left(2x^{2-1}-4x^{1-1}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
ഒരു പോളിനോമിലിന്‍റെ അനുമാനം അതിന്‍റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്‍റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്‍റെ അനുമാനം nax^{n-1} ആണ്.
\frac{\left(x^{2}-4x^{1}-21\right)\times 6x^{0}-\left(6x^{1}-37\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
ലഘൂകരിക്കുക.
\frac{x^{2}\times 6x^{0}-4x^{1}\times 6x^{0}-21\times 6x^{0}-\left(6x^{1}-37\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
x^{2}-4x^{1}-21, 6x^{0} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x^{2}\times 6x^{0}-4x^{1}\times 6x^{0}-21\times 6x^{0}-\left(6x^{1}\times 2x^{1}+6x^{1}\left(-4\right)x^{0}-37\times 2x^{1}-37\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
6x^{1}-37, 2x^{1}-4x^{0} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{6x^{2}-4\times 6x^{1}-21\times 6x^{0}-\left(6\times 2x^{1+1}+6\left(-4\right)x^{1}-37\times 2x^{1}-37\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക.
\frac{6x^{2}-24x^{1}-126x^{0}-\left(12x^{2}-24x^{1}-74x^{1}+148x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
ലഘൂകരിക്കുക.
\frac{-6x^{2}+74x^{1}-274x^{0}}{\left(x^{2}-4x^{1}-21\right)^{2}}
ഒരുപോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{-6x^{2}+74x-274x^{0}}{\left(x^{2}-4x-21\right)^{2}}
ഏതു പദത്തിനും t, t^{1}=t.
\frac{-6x^{2}+74x-274}{\left(x^{2}-4x-21\right)^{2}}
0, t^{0}=1 ഒഴികെ ഏതു പദത്തിനും t.