മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{34-x}{7\left(x+1\right)}
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
-\frac{5}{\left(x+1\right)^{2}}
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{5}{x+1}-\frac{2}{14}
14 നേടാൻ 17 എന്നതിൽ നിന്ന് 3 കുറയ്ക്കുക.
\frac{5}{x+1}-\frac{1}{7}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{14} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{5\times 7}{7\left(x+1\right)}-\frac{x+1}{7\left(x+1\right)}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. x+1, 7 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 7\left(x+1\right) ആണ്. \frac{5}{x+1}, \frac{7}{7} എന്നിവ തമ്മിൽ ഗുണിക്കുക. \frac{1}{7}, \frac{x+1}{x+1} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{5\times 7-\left(x+1\right)}{7\left(x+1\right)}
\frac{5\times 7}{7\left(x+1\right)}, \frac{x+1}{7\left(x+1\right)} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{35-x-1}{7\left(x+1\right)}
5\times 7-\left(x+1\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{34-x}{7\left(x+1\right)}
35-x-1 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{34-x}{7x+7}
7\left(x+1\right) വികസിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{x+1}-\frac{2}{14})
14 നേടാൻ 17 എന്നതിൽ നിന്ന് 3 കുറയ്ക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{x+1}-\frac{1}{7})
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{14} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 7}{7\left(x+1\right)}-\frac{x+1}{7\left(x+1\right)})
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. x+1, 7 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 7\left(x+1\right) ആണ്. \frac{5}{x+1}, \frac{7}{7} എന്നിവ തമ്മിൽ ഗുണിക്കുക. \frac{1}{7}, \frac{x+1}{x+1} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 7-\left(x+1\right)}{7\left(x+1\right)})
\frac{5\times 7}{7\left(x+1\right)}, \frac{x+1}{7\left(x+1\right)} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{35-x-1}{7\left(x+1\right)})
5\times 7-\left(x+1\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{34-x}{7\left(x+1\right)})
35-x-1 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{34-x}{7x+7})
x+1 കൊണ്ട് 7 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\frac{\left(7x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+34)-\left(-x^{1}+34\right)\frac{\mathrm{d}}{\mathrm{d}x}(7x^{1}+7)}{\left(7x^{1}+7\right)^{2}}
ഏതെങ്കിലും രണ്ട് ഡിഫറൻഷ്യബിൾ ഫംഗ്ഷനുകൾക്കായി, രണ്ട് ഫംഗ്ഷൻ ഹരണഫലങ്ങളുടെ ഡെറിവേറ്റീവ് എന്നത് ന്യൂമറേറ്റർ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ഭിന്നസംഖ്യാഛേദവും ഭിന്നസംഖ്യാഛേദ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ന്യൂമറേറ്ററും തമ്മിലുള്ള വ്യവകലനവും ഒപ്പം ഭിന്നസംഖ്യാഛേദത്തിന്റെ സ്ക്വയർ കൊണ്ടുള്ള എല്ലാത്തിന്റെയും ഹരണവുമാണ്.
\frac{\left(7x^{1}+7\right)\left(-1\right)x^{1-1}-\left(-x^{1}+34\right)\times 7x^{1-1}}{\left(7x^{1}+7\right)^{2}}
ഒരു പോളിനോമിലിന്റെ അനുമാനം അതിന്റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്റെ അനുമാനം nax^{n-1} ആണ്.
\frac{\left(7x^{1}+7\right)\left(-1\right)x^{0}-\left(-x^{1}+34\right)\times 7x^{0}}{\left(7x^{1}+7\right)^{2}}
ഗണിതം ചെയ്യുക.
\frac{7x^{1}\left(-1\right)x^{0}+7\left(-1\right)x^{0}-\left(-x^{1}\times 7x^{0}+34\times 7x^{0}\right)}{\left(7x^{1}+7\right)^{2}}
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് വികസിപ്പിക്കുക.
\frac{7\left(-1\right)x^{1}+7\left(-1\right)x^{0}-\left(-7x^{1}+34\times 7x^{0}\right)}{\left(7x^{1}+7\right)^{2}}
ഒരേ ബേസിന്റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്റുകൾ ചേർക്കുക.
\frac{-7x^{1}-7x^{0}-\left(-7x^{1}+238x^{0}\right)}{\left(7x^{1}+7\right)^{2}}
ഗണിതം ചെയ്യുക.
\frac{-7x^{1}-7x^{0}-\left(-7x^{1}\right)-238x^{0}}{\left(7x^{1}+7\right)^{2}}
അനാവശ്യ പരാന്തിസിസ് നീക്കംചെയ്യുക.
\frac{\left(-7-\left(-7\right)\right)x^{1}+\left(-7-238\right)x^{0}}{\left(7x^{1}+7\right)^{2}}
ഒരുപോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{-245x^{0}}{\left(7x^{1}+7\right)^{2}}
-7-ൽ നിന്ന് -7 എന്നതും, -7-ൽ നിന്ന് 238 എന്നതും കുറയ്ക്കുക.
\frac{-245x^{0}}{\left(7x+7\right)^{2}}
ഏതു പദത്തിനും t, t^{1}=t.
\frac{-245}{\left(7x+7\right)^{2}}
0, t^{0}=1 ഒഴികെ ഏതു പദത്തിനും t.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}